Problem 1: (Problem 51, page 92) A coin, having probability p for landing heads, is flipped until head appears for the r-th time. Let N denote the number of flips required. Calculate $E[N]$.

Hint: Write N as a sum of geometric random variables.

Solution: Let X_j denote the waiting time for the j-th head to show up. We claim that X_j is a geometric random variable with parameter p. Indeed, if head appears for the $j-1$-th time, then flipping the coin is just like starting to flip a coin, so the probability of appearing head first in the n-th trial is the same as the probability of having a head the first time in the n-th trial after the $j-1$-th appearance of head.

So, $N = \sum_{i=1}^{r} X_i$ is the waiting time for the r-th head to show up and

$$EN = \sum_{i=1}^{r} EX_i = r EX_1 = \frac{r}{p}$$

is the expected time (see book page 68/69 for the expectation of a geometric random variable with parameter p).

Problem 2: (Problem 56, page 93) There are n types of coupons. Each newly obtained coupon is, independently, type i with probability p_i, $i = 1, ..., n$. Find the expected number and the variance of the number of distinct types obtained in a collection of k coupons.

Solution: Let ξ_l be a random variable which is 1 if the type l occurs in the collection of k coupons and be 0 otherwise. We are interested in the expectation and variance of $N = \sum_{l=1}^{n} \xi_l$.

Now

$$P(\xi_l = 0) = P(\text{type } l \text{ is not used in the collection}) = (1 - p_l)^k,$$

hence

$$EN = \sum_{l=1}^{n} E\xi_l = \sum_{l=1}^{n} (1 - (1 - p_l)^k).$$
Since for \(l \neq l' \)
\[
1 - P(\xi_l = 1, \xi_{l'} = 1) = P(\{\xi_l = 0\} \cup \{\xi_{l'} = 0\})
\]
\[
= P(\xi_l = 0) + P(\xi_{l'} = 0) - P(\xi_l = 0, \xi_{l'} = 0)
\]
\[
= (1 - p_l)^k + (1 - p_{l'})^k - (1 - p_l - p_{l'})^k
\]
we get
\[
P(\xi_l = 1, \xi_{l'} = 1) = 1 - [(1 - p_l)^k + (1 - p_{l'})^k + (1 - p_l - p_{l'})^k].
\]

The variance of \(N \) is
\[
Var(N) = \sum_{i=1}^{n} Var(\xi_i) + 2 \sum_{j=2}^{n} \sum_{i=1}^{j-1} Cov(\xi_i, \xi_j),
\]
so, using what has been shown above (\(E(\xi_i) = E(\xi_i^2) = 1 - (1 - p_l)^k \) and \(E(\xi_i \xi_j) = 1 - [(1 - p_l)^k + (1 - p_{l'})^k + (1 - p_l - p_{l'})^k] \)) we arrive at
\[
Var(N) = \sum_{i=1}^{n} (1 - p_l)^k(1 - (1 - p_l)^k) + 2 \sum_{1 \leq i, j \leq n} [(1 - p_i - p_j)^k - (1 - p_i)^k - (1 - p_j)^k].
\]

Problem 3: (Problem 62, page 94) In deciding upon the appropriate premium to charge, insurance companies sometimes use the exponential principle, defined as follows. With \(X \) as the random amount that it will have to pay in claims, the premium charged by the insurance company is
\[
P = \frac{1}{a} \ln(E[e^{aX}])
\]
where \(a \) is some specific positive constant. Find \(P \) when \(X \) is an exponential random variable with parameter \(\lambda \), and \(a = \alpha \lambda \), where \(0 < \alpha < 1 \).

Solution:
\[
\frac{1}{a} \ln E[e^{aX}] = \frac{1}{\alpha \lambda} \ln \int_{0}^{\infty} \lambda e^{-\lambda(1-\alpha)x} dx = -\frac{1}{\alpha \lambda} \ln(1-\alpha).
\]

Problem 4: (Problem 74, page 95) Let \(X_1, X_2, ... \) be a sequence of independent, identically distributed continuous random variables. We say that a record occurs at time \(n \) if \(X_n > \max(X_1, ..., X_{n-1}) \). That is, \(X_n \) is a record if it is larger than each of \(X_1, ..., X_{n-1} \). Show

1. \(P\{\text{a record occurs at time } n\} = \frac{1}{n} \).
2. \(E[\text{number of records by time } n] = \sum_{i=1}^{n} \frac{1}{i} \).
3. \(\text{Var}(\text{number of records by time } n) = \sum_{i=1}^{n} \frac{i-1}{i^2} \).

4. Let \(N = \min\{n : n > 1 \text{ and a record occurs at time } n\} \). Show \(E[N] = \infty \).

Solution: Let \(\xi_i \) denote the random variable which is 1 if a record occurs at time \(i \), and 0 otherwise. It follows that
\[
P(\xi_i = 1) = P(\max_{k<i} X_k < X_i).
\]
Since the \(X_k \) are iid, \(P(\max_{k<i} X_k < X_i) = P(\max_{k\leq i, k\neq l} X_k < X_l) \) and
\[
1 = \sum_{l=1}^{i} P(\max_{k\leq i, k\neq l} X_k < X_l),
\]
it follows that \(E\xi_i = \frac{1}{i} \), hence \(S = \sum_{i=1}^{n} \xi_i \), the number of records by time \(n \) satisfies
\[
ES = \sum_{i=1}^{n} \frac{1}{i}.
\]
Similarly
\[
P(\xi_j = 1, \xi_j = 1) = \frac{1}{ij}
\]
for \(1 \leq i < j \leq n \), hence the variables are uncorrelated and
\[
\text{Var}(N) = \sum_{i=1}^{n} \frac{1}{i} - \frac{1}{i^2} = \sum_{i=1}^{n} \frac{i - 1}{i^2}.
\]

The event that a record occurs at time \(n \) but not before at times 2, ..., \(n - 1 \) is the event
\[
A_n = \{ \max_{2\leq k<n} X_k < X_1 < X_n \}.
\]
Its probability is \(P(A_n) = \frac{1}{n(n-1)} \) by similar reasonings as above, so
\[
EN = \sum_{n=2}^{\infty} nP(A_n) = \sum_{n=2}^{\infty} \frac{1}{n-1} = \infty.
\]

Problem 5: (Problem 76, page 96) Let \(X \) and \(Y \) be independent random variables with means \(\mu_X \) and \(\mu_Y \) and variances \(\sigma_X^2 \) and \(\sigma_Y^2 \). Show that
\[
\text{Var}(XY) = \sigma_X^2 \sigma_Y^2 + \mu_Y^2 \sigma_X^2 + \mu_X^2 \sigma_Y^2.
\]

Solution: Using independence and the definition of the variance
\[
\text{Var}(XY) = E(X^2Y^2) - (EXY)^2 = EX^2EY^2 - (EX)^2(1Y)^2
\]
\[
= (EX^2 - (EX)^2)(EY^2 - (1Y)^2) + (EX^2 - (EX)^2)(1Y)^2 + (EX)^2(EY^2 - (1Y)^2).
\]