416 Stochastic Modeling - Assignment 1

SOLUTIONS

Problem 1: (Problem 51, page 92) A coin, having probability p for landing heads, is flipped until head appears for the *r*-th time. Let N denote the number of flips required. Calculate E[N].

Hint: Write N as a sum of geometric random variables.

Solution: Let X_j denote the waiting time for the *j*-th head to show up. We claim that X_j is a geometric random variable with parameter *p*. Indeed, if head appears for the j - 1-th time, then flipping the coin is just like starting to flip a coin, so the probability of appearing head first in the *n*-th trial is the same as the probability of having a head the first time in the *n*-th trial after the j - 1-th appearance of head.

So, $N = \sum_{i=1}^{r} X_i$ is the waiting time for the *r*-th head to show up and

$$EN = \sum_{i=1}^{r} EX_i = rEX_1 = \frac{r}{p}$$

is the expected time (see book page 68/69 for the expectation of a geometric random variable with parameter p).

Problem 2: (Problem 56, page 93) There are *n* types of coupons. Each newly obtained coupon is, independently, type *i* with probability p_i , i = 1, ..., n. Find the expected number and the variance of the number of distinct types obtained in a collection of *k* coupons.

Solution: Let ξ_l be a random variable which is 1 if the type l occurs in the collection of k coupons and be 0 otherwise. We are interested in the expectation and variance of $N = \sum_{i=1}^{n} \xi_i$.

Now

 $P(\xi_l = 0) = P(\text{type } l \text{ is not used in the collection}) = (1 - p_l)^k$,

hence

$$EN = \sum_{l=1}^{n} E\xi_l = \sum_{l=1}^{n} (1 - (1 - p_l)^k).$$

Since for $l \neq l'$

$$1 - P(\xi_l = 1, \xi_{l'} = 1) = P(\{\xi_l = 0\} \cup \{\xi_{l'} = 0\})$$

= $P(\xi_l = 0) + P(\xi_{l'} = 0) - P(\xi_l = 0, \xi_{l'} = 0)$
= $(1 - p_l)^k + (1 - p_{l'})^k - (1 - p_l - p_{l'})^k$

we get

$$P(\xi_l = 1, \xi_{l'} = 1) = 1 - [(1 - p_l)^k + (1 - p_{l'})^k + (1 - p_l - p_{l'})^k].$$

The variance of N is

$$Var(N) = \sum_{i=1}^{n} Var(\xi_i) + 2\sum_{j=2}^{n} \sum_{i=1}^{j-1} Cov(\xi_i, \xi_j),$$

so, using what has been shown above $(E(\xi_i) = E(\xi_i^2) = 1 - (1 - p_i)^k$ and $E(\xi_i\xi_j) = 1 - [(1 - p_l)^k + (1 - p_{l'})^k + (1 - p_l - p_{l'})^k])$ we arrive at

$$Var(N) = \sum_{i=1}^{n} (1-p_i)^k (1-(1-p_i)^k) + 2\sum_{1 \le i,j \le n} [(1-p_i-p_j)^k - (1-p_i)^k - (1-p_j)^k].$$

Problem 3: (Problem 62, page 94) In deciding upon the appropriate premium to charge, insurance companies sometimes use the exponential principle, defined as follows. With X as the random amount that it will have to pay in claims, the premium charged by the insurance company is

$$P = \frac{1}{a} \ln(E[e^{aX}])$$

where a is some specific positive constant. Find P when X is an exponential random variable with parameter λ , and $a = \alpha \lambda$, where $0 < \alpha < 1$.

Solution:

$$\frac{1}{a}\ln Ee^{aX} = \frac{1}{\alpha\lambda}\ln\int_0^\infty \lambda e^{-\lambda(1-\alpha)x}dx = -\frac{1}{\alpha\lambda}\ln(1-\alpha).$$

Problem 4: (Problem 74, page 95) Let $X_1, X_2, ...$ be a sequence of idependent, identically distributed continuous random variables. We say that a record occurs at time n if $X_n > \max(X_1, ..., X_{n-1})$. That is, X_n is a record if it is larger than each of $X_1, ..., X_{n-1}$. Show

- 1. $P\{\text{a record occurs at time } n\} = \frac{1}{n}$.
- 2. E[number of records by time n] = $\sum_{i=1}^{n} \frac{1}{i}$.

- 3. Var(number of records by time $n) = \sum_{i=1}^{n} \frac{i-1}{i^2}.$
- 4. Let $N = \min\{n : n > 1 \text{ and a record occurs at time } n\}$. Show $E[N] = \infty$.

Solution: Let ξ_i denote the random variable which is 1 if a record occurs at time *i*, and be 0 otherwise. It follows that

$$P(\xi_i = 1) = P(\max_{k < i} X_k < X_i).$$

Since the X_k are iid, $P(\max_{k \le i} X_k < X_i) = P(\max_{k \le i, k \ne l} X_k < X_l)$ and

$$1 = \sum_{l=1}^{i} P(\max_{k \le i, k \ne l} X_k < X_l),$$

it follows that $E\xi_i = \frac{1}{i}$, hence $S = \sum_{i=1}^n \xi_i$, the number of records by time *n* satisfies

$$ES = \sum_{i=1}^{n} \frac{1}{i}$$

Similarly

$$P(\xi_j = 1, \xi_j = 1) = \frac{1}{ij}$$

for $1 \leq i < j \leq n$, hence the variables are uncorrelated and

$$Var(N) = \sum_{i=1}^{n} \frac{1}{i} - \frac{1}{i^2} = \sum_{i=1}^{n} \frac{i-1}{i^2}.$$

The event that a record occurs at time n but not before at times 2, ..., n - 1 is the event

$$A_n = \{\max_{2 \le k < n} X_k < X_1 < X_n\}.$$

Its probability is $P(A_n) = \frac{1}{n(n-1)}$ by similar reasonings as above, so

$$EN = \sum_{n=2}^{\infty} nP(A_n) = \sum_{n=2}^{\infty} \frac{1}{n-1} = \infty.$$

Problem 5: (Problem 76, page 96) Let X and Y be independent random variables with means μ_X and μ_Y and variances σ_X^2 and σ_Y^2 . Show that

$$Var(XY) = \sigma_X^2 \sigma_Y^2 + \mu_Y^2 \sigma_X^2 + \mu_X^2 \sigma_Y^2.$$

Solution: Using independence and the definition of the variance

$$Var(XY) = E(X^{2}Y^{2}) - (EXY)^{2} = EX^{2}EY^{2} - (EX)^{2}(EY)^{2}$$

= $(EX^{2} - (EX)^{2})(EY^{2} - (EY)^{2}) + (EX^{2} - (EX)^{2})(EY)^{2} + (EX)^{2}(EY^{2} - (EY)^{2}).$