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ISyE 6761 — Fall 2012
Homework #1 Solutions (revised 10/6/12)

1. The probability of winning on a single toss of the dice is p. Player A starts,
and if he fails, he passes the dice to B, who then attempts to win on her toss.
They continue tossing back and forth until one of them wins. What are their
probabilities of winning?

Solution: Let S and F denote “success” and “failure”, respectively.

P (A wins) = P (S) + P (FFS) + P (FFFFS) + · · ·
= p+ (1− p)(1− p)p+ (1− p)4p

= p
∞∑
i=0

(1− p)2i =
p

1− (1− p)2
=

1

2− p
. ♦

2. Suppose that all n men at a party throw their hats in the center of the room. Each
man then randomly selects a hat. What’s the probability that at least one of the
men gets his own hat? What happens as n→∞?

Solution: Let Ai be the event that man i gets his own hat, for i = 1, 2, . . . , n.
Then

P (At least one of the men gets his own hat)

= P (A1 ∪ A2 ∪ · · · ∪ An)

=
n∑
i=1

P (Ai)−
∑
i<j

P (AiAj) +
∑
i<j<k

P (AiAjAk) + · · ·+ (−1)n+1P (A1A2 · · ·An)

= n · 1

n
−
(
n
2

)
1

n(n− 1)
+

(
n
3

)
1

n(n− 1)(n− 2)
+ · · ·+ (−1)n+1 1

n!

= 1− 1

2!
+

1

3!
− · · ·+ (−1)n+1 1

n!
.

Note that this quantity goes to 1− 1
e

as n→∞. ♦

3. A fair coin is continually tossed. What’s the probability that the pattern THHH
occurs before the pattern HHHH?

Solution: When I first did this problem, I did it a very general, beautiful way
that ended up taking me 30 minutes. Then I saw the trivial answer! Namely, the
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only way for HHHH to occur first is if you get that papttern on your first four
flips; otherwise, you are guaranteed that THHH will occur first. Therefore, the
answer is 15/16. ♦

4. A gambler has in his pocket a fair coin and a two-headed coin.

(a) He selects one of the coins at random, and when he flips it, it comes up heads.
What’s the probability that it’s the fair coin?

Solution: Let F,U denote fair and unfair, respectively. We use Bayes’ Rule
to find

Pr(F |H) =
Pr(H|F )Pr(F )

Pr(H|F )Pr(F ) + Pr(H|U)Pr(U)

=
1
2
· 1
2

1
2
· 1
2

+ 1 · 1
2

= 1/3. ♦

(b) Suppose that he flips the coin n times, and it comes up heads each time.
What’s the probability that it’s fair?

Solution: As above,

Pr(F |HH · · ·H) =
Pr(HH · · ·H|F )Pr(F )

Pr(HH · · ·H|F )Pr(F ) + Pr(HH · · ·H|U)Pr(U)

=
1
2n
· 1
2

1
2n
· 1
2

+ 1 · 1
2

= 1/(2n + 1). ♦

5. A die is thrown 7 times. Find

(a) Pr(‘6’ comes up at least once).

Solution: 1− Pr(no 6’s appear) = 1− (5/6)7 ♦.

(b) Pr(each face appears at least once).

Solution: Denote the six faces by A,B,C,D,E,F. Thus, we need to find the
number of tosses of the form A,A,B,C,D,E,F. We then see that

i. The # ways to choose A is 6.
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ii. The # ways to place the two A’s is
(
7
2

)
.

iii. The # ways to permute B,C,D,E,F is 5!.

iv. The # ways to toss the die 7 times is 67.

Thus,

Pr(each face appears at least once) = 6 ·
(

7

2

)
· 5!/67. ♦

6. If X is a nonnegative continuous random variable, and g is a differentiable function
with g(0) = 0, prove that E[g(X)] =

∫∞
0 g′(t)Pr(X > t) dt. [We’ll also assume that

E[g(X)] is finite.]

Solution: By the Law of the Unconscious Statistician,

E[g(X)] =
∫ ∞
0

g(x)f(x) dx

=
∫ ∞
0

f(x)[g(x)− g(0)] dx

=
∫ ∞
0

f(x)
∫ x

0
g′(t) dt dx

=
∫ ∞
0

∫ x

0
g′(t)f(x) dt dx

=
∫ ∞
0

g′(t)
∫ ∞
t

f(x) dx dt (by Fubini)

=
∫ ∞
0

g′(t) Pr(X > t) dt. ♦

Alternatively, you can use integration by parts to obtain∫ ∞
0

g′(t) Pr(X > t) dt = g(t) Pr(X > t) |∞0 −
∫ ∞
0

g(t)[−f(t)] dt

=
∫ ∞
0

g(t)f(t) dt = E[g(X)],

where we have assumed that limt→∞ g(t) Pr(X > t) = 0. ♦

7. Suppose that X1, X2, . . . , Xn are i.i.d. Exp(λ). What is the p.d.f. of miniXi?
maxiXi?

Solution: Let Y ≡ miniXi. Then

P (Y > y) = P (min(X1, X2, . . . , Xn) > y)
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= P (X1 > y,X2 > y, . . . , Xn > y)

=
n∏
i=1

P (Xi > y)

= e−nλy.

This implies that the p.d.f. of Y is g(y) = nλe−nλy for y > 0; and so Y ∼ Exp(nλ).
♦

Now let Z ≡ maxiXi. Then

P (Z < z) = P (max(X1, X2, . . . , Xn) < z)

= P (X1 < z,X2 < z, . . . , Xn < z)

=
n∏
i=1

P (Xi < z)

= [1− e−λz]n.

This implies that the p.d.f. of Z is h(z) = nλ[1− e−λz]n−1 for y > 0. ♦

8. Calculate the m.g.f. of the Unif(a, b) distribution and use it to calculate the mean
and variance.

Solution: If X ∼ Unif(a, b), then the m.g.f. is

MX(t) = E[etX ] =
∫ b

a

etx

b− a
dx =

ebt − eat

t(b− a)
. ♦

Now use L’Hôpital’s Rule to obtain

E[X] =
d

dt
MX(t)

∣∣∣∣
t=0

=
d

dt

ebt − eat

t(b− a)

∣∣∣∣
t=0

=
t(b− a)(bebt − aeat)− (ebt − eat)(b− a)

t2(b− a)2

∣∣∣∣
t=0

=
t(bebt − aeat)− (ebt − eat)

t2(b− a)

∣∣∣∣
t=0

=
(bebt − aeat) + t(b2ebt − a2eat)− (bebt − aeat)

2t(b− a)

∣∣∣∣
t=0

=
b2ebt − a2eat

2(b− a)

∣∣∣∣
t=0

=
a+ b

2
. ♦
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Similarly (but more tediously), you can calculate E[X2] and then
Var(X) = (b− a)2/12. ♦

9. Show that the sum of i.i.d. exponential random variables is a gamma random
variable.

Solution: Let X1, X2, . . . , Xn be i.i.d. Exp(λ). Then from class, we know that the
m.g.f. of Xi is MXi

(t) = λ/(λ− t), i = 1, 2, . . . , n; and so the m.g.f. of Y ≡ ∑n
i=1Xi

is

MY (t) = [MXi
(t)]n =

(
λ

λ− t

)n
, for t < λ.

Meanwhile, the p.d.f. of a Gamma(n, λ) (or Erlang) random variable Z is given by

g(z) =
λnzn−1e−λz

Γ(n)
, for z > 0.

Thus, the m.g.f. is

MZ(t) =
∫ ∞
0

etzλnzn−1e−λz

Γ(n)
dz

=
λn

Γ(n)

∫ ∞
0

zn−1e−(λ−t)z dz

=
λn

(λ− t)nΓ(n)

∫ ∞
0

un−1e−u du (where u = (λ− t)z, with t < λ)

=

(
λ

λ− t

)n
(by definition of Γ(n)).

Since MY (t) = MZ(t), the uniqueness of m.g.f.’s gives our result. ♦.

10. Suppose that U ∼ Unif(0, 1). Find the p.d.f. of −1
λ
`n(U).

Solution: (This problem was actually done in class.) The c.d.f. of Y = −1
λ
`n(U) is

G(y) = Pr(Y ≤ y)

= Pr
(−1

λ
`n(U) ≤ y

)
= Pr (`n(U) ≥ −λy)

= Pr
(
U ≥ e−λy

)
= 1− e−λy.
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This immediately implies that Y ∼ Exp(λ); and so the p.d.f. is g(y) = λe−λy, for
y > 0. ♦

11. Suppose X, Y have joint p.d.f. f(x, y) = cxy for 0 < x < y < 1 for some c. Find
Corr(X, Y ).

Solution: First of all, note that

1 =
∫ ∫

<2
f(x, y) dx dy =

∫ 1

0

∫ y

0
cxy dx dy =

c

8
.

Thus, c = 8, and we can really get going. In particular,

fX(x) =
∫
<
f(x, y) dy =

∫ 1

x
8xy dy = 4(x− x3), 0 < x < 1.

E[X] =
∫
<
xfX(x) dx =

∫ 1

0
4(x2 − x4) dx =

8

15
.

E[X2] =
∫
<
x2fX(x) dx =

∫ 1

0
4(x3 − x5) dx =

1

3
.

Var(X) = E[X2]− (E[X])2 =
11

225
.

fY (y) =
∫
<
f(x, y) dx =

∫ y

0
8xy dy = 4y3, 0 < y < 1.

E[Y ] =
∫
<
yfY (y) dy =

∫ 1

0
4y4 dy =

4

5
.

E[Y 2] =
∫
<
y2fY (y) dy =

∫ 1

0
4y5) dy =

2

3
.

Var(Y ) = E[Y 2]− (E[Y ])2 =
2

75
.
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E[XY ] =
∫ ∫

<2
xyf(x, y) dx dy =

∫ 1

0

∫ y

0
8x2y2 dx dy =

4

9
.

All of this stuff implies that

Corr(X, Y ) =
Cov(X, Y )√
Var(X)Var(Y )

=
E[XY ]− E[X]E[Y ]√

Var(X)Var(Y )
= 0.4924. ♦

12. Use Chebychev’s inequality to prove the WLLN, i.e., if X1, X2, . . . , Xn are i.i.d.
with mean µ and finite variance, then for any ε > 0, we have

Pr
(
|X̄ − µ| > ε

)
→ 0 as n→∞.

Solution: (This was done in class.) By Chebychev, we have

Pr
(
|X̄ − µ| > ε

)
≤ Var(X̄)

ε2
=

Var(Xi)

nε2
→ 0 as n→∞. ♦

13. Suppose that X1, X2, . . . , X10 are i.i.d. Pois(1).

(a) Use the Markov inequality to bound Pr(X1 + · · ·+X10 ≥ 15).

Solution: Let Y =
∑10
i=1Xi. Markov states that Pr(Y ≥ ε) ≤ E[Y ]/ε. Then

since E[Xi] = 1, we have

Pr(Y ≥ 15) ≤ 10E[Xi]

15
=

2

3
. ♦

(b) Use the CLT to approximate Pr(X1 + · · ·+X10 ≥ 15).

Solution: By the CLT, we have

Pr(Y ≥ 15) = Pr
(
Y − E[Y ]√
Var(Y )

≥ 15− E[Y ]√
Var(Y )

)

≈ Pr
(
Nor(0, 1) ≥ 15− 10√

10

)
= 1− Φ(1.581) = 0.0569. ♦
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Note that you might want to improve upon the above solution by employing a
continuity correction to take into account the fact that the Poisson is a discrete
distribution. This would result in the slightly different approximation

Pr(Y ≥ 15) = Pr(Y ≥ 14.5)

≈ Pr
(
Nor(0, 1) ≥ 14.5− 10√

10

)
= 1− Φ(1.423) = 0.0774. ♦

Of course, if you really want to check your answer, you can do so exactly, by
noting that Y ∼ Pois(10). Then

Pr(Y ≥ 15) = 1−
14∑
y=0

e−10(10)y

y!
= 0.08346. ♦

14. Show that

lim
n→∞

e−n
n∑
k=0

nk

k!
=

1

2
.

Solution: Suppose that Y ∼ Pois(n). As implied by the previous problem, you
can write Y =

∑n
i=0Xi where the Xi’s are i.i.d. Pois(1). Thus, by the CLT, Y

becomes approximately normal as n becomes large. Now let’s use this fact. . .

n∑
k=0

e−nnk

k!
= Pr(Y ≤ n)

≈ Pr

Nor(0, 1) ≤ n− E[Y ]√
Var(Y )


= Pr (Nor(0, 1) ≤ 0) = 0.5. ♦

15. Two vendors offer functionally identical products with mean lifetime 10 months.
The distribution of the lifetime of the product from the first vendor is Exp(λ),
while the distribution of the lifetime of the product from the second vendor is
Erlang2(µ). If the objective is to maximize the probability that the lifetime of a
product is greater than 8 months, which of the two vendors should be chosen?
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Solution: LetX1 andX2 be lifetimes of products from the first and second vendors,
respectively. Since X1 ∼ Exp(λ) and X2 ∼ Erlang2(µ), we have E[X1] = 1/λ = 10
and E[X2] = 2/µ = 10. Thus, λ = 0.1 and µ = 0.2. This immediately implies that

P (X1 ≥ 8) = e−0.1×8 = 0.449

P (X2 ≥ 8) =
1∑
i=0

e−0.2×8
(0.2× 8)i

i!
= 2.6e−1.6 = 0.525.

Hence, the second vendor should be chosen. ♦

16. A system consists of n components. Each component functions with probability p
independently of the others. The system as a whole functions if at least k compo-
nents function. (This is a k-out-of-n system.)

(a) What is the probability that the system functions?

(b) Suppose that the lifetime of each component is exponential with mean one
week. Compute the probability that the system functions after t weeks when
n = 3 and k = 2.

(c) Suppose we visit the system in item (b) at the end of 3 weeks and replace all
failed components at a cost of $75 each. If the system has already failed, it
costs us an additional $1,000. Compute the mean total cost incurred at the
end of 3 weeks.

Solution:

(a)
n∑
i=k

(
n
i

)
pi(1− p)n−i. ♦

(b) Set p = e−t. Then
3∑
i=2

(
n
i

)
pi(1− p)n−i = 3e−2t − 2e−3t. ♦

(c) Set p = e−3. Then the total cost is

0p3+75

(
3
1

)
p2(1−p)+(75×2+1000)

(
3
2

)
p1(1−p)2+(75×3+1000)(1−p)3 = 1206.6. ♦

17. Suppose a machine has 3 components with i.i.d. Exp(0.1) lifetimes. Compute the
mean lifetime of the machine if it needs all 3 components to function.
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Solution: Let X be a lifetime of the machine, and Xi be that of the ith component,
where Xi ∼ Exp(0.1), i = 1, 2, 3. Then

P (X > x) = P (min(X1, X2, X3) > x)

= P (X1 > x,X2 > x,X3 > x)

=
3∏
i=1

P (Xi > x)

= e−0.3x.

This implies that X ∼ Exp(0.3), and so the mean lifetime of the machine is 1/0.3.
♦

18. A statistical experiment consists of starting 10 machines at time 0, and recording
the number of operating machines after 10 hours. If the lifetimes (in hours)
of these machines are i.i.d. Exp(0.125), compute the mean and variance of the
number of operating machines after 10 hours.

Solution: Let X be the number of operating machines after 10 hours. The prob-
ability that a typical machine is alive after 10 hours is e−10×0.125 = 0.2865.
Then clearly, X ∼ Bin(10, 0.2865). Hence, E[X] = np = 2.865, and
Var(X) = npq = 2.044. ♦

19. Let X1, X2, . . . be i.i.d. Exp(λ) random variables, and let N be a Geom(p) random
variable that is independent of the Xi’s. Find the distribution of the random sum
Z = X1 + · · ·+XN .

Solution: Given that N = k, we know that Z ∼ Erlangk(λ). Thus,

P (Z > x) =
∞∑
k=1

P (Z > x|N = k)P (N = k) =
∞∑
k=1

k−1∑
i=0

e−λx
(λx)i

i!
(1− p)k−1p

=
∞∑
i=0

∞∑
k=i+1

e−λx
(λx)i

i!
(1− p)k−1p =

∞∑
i=0

e−λx
(λx)i

i!
p
∞∑

k=i+1

(1− p)k−1

=
∞∑
i=0

e−λx
(λx)i

i!
(1− p)i = e−λxe(1−p)λx

∞∑
i=0

e−(1−p)λx
((1− p)λx)i

i!

= e−pλx.

Hence, Z has an exponential distribution with parameter pλ. ♦
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20. The lifetimes of two car batteries (brands A and B) are independent exponential
random variables with means 12 hours and 10 hours, respectively. What is the
probability that a brand B battery lasts longer than a brand A one?

Solution: Let A (resp., B) be lifetime of battery A (resp., B). Then

P (B > A) =
∫ ∞
0

P (B > A|A = x)fA(x) dx

=
∫ ∞
0

e−λ2xλ1e
−λ1x dx

=
λ1

λ1 + λ2
= 0.455. ♦

21. (Bonus Question) A couple has two kids and at least one is a boy born on a
Tuesday. What’s the probability that both are boys?

Solution: Let the events Bx [Gx] = ‘Boy [Girl] born on day x,’ x = 1, 2, . . . , 7
(x = 3 is Tuesday). The sample space for this experiment is

S = {(Gx, Gy), (Gx, By), (Bx, Gy), (Bx, By), x, y = 1, 2, . . . , 7}

(so |S| = 4× 49 = 196).

Let C be the event that both are boys (with at least one born on a Tuesday)
= {(Bx, B3), x = 1, 2, . . . , 7} ∪ {(B3, By), y = 1, 2, . . . , 7}. Note that |C| = 13 (to
avoid double counting (B3, B3)).

Let D be the event that there is at least one boy born on a Tuesday =
{(Gx, B3), (B3, Gy), x, y = 1, 2, . . . , 7} ∪ C. So |D| = 27 (list them out if you
don’t believe me). Then

Pr(C|D) =
Pr(C ∩D)

Pr(D)
=

Pr(C)

Pr(D)
=

13/196

27/196
= 13/27. ♦


