CH-11 Simple Linear Regression and
Correlation

« Empirical models

*Simple linear regression

*Properties of the least squares estimators
*Hypothesis tests in simple linear regression
*Confidence intervals

*Prediction of new observations

*Adequacy of the regression model



11-1 Empirical Models

* Many problems in engineering and science involve
exploring the relationships between two or more variables.

» Regression analysis is a statistical technique that is very
useful for these types of problems.

* For example, 1n a chemical process, suppose that the yield of
the product 1s related to the process-operating temperature.

* Regression analysis can be used to build a model to predict
yield at a given temperature level.




11-1 Empirical Models

Table 11-1  Oxyoen and Hydrocarbon Levels

Observation Hydrocarbon Level Purity
Number x(%a) ¥i%)
| 0.99 90.01
2 1.02 BO.05
3 1.15 91.43
4 1.29 93.74
5 .46 96.73
] 1.36 Q4 .45
7 0.87 B7.59
& 1.23 91.77
9 1.55 9942
L .40 9365
11 1.19 93.54
12 1.15 92.52
13 0.98 90,56
14 1.01 89,54
15 1.11 BO.E35
l& 1.20 90.39
17 l.26 93.25
18 1.32 93.41
19 1.43 94 98

20 0.95 B7.33




11-1 Empirical Models
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11-1 Empirical Models

Based on the scatter diagram, it is probably reasonable to assume
that the mean of the random variable Y 1s related to x by the
following straight-line relationship:

E(Y|x)= pylx = Bo + Bix

where the slope and intercept of the line are called regression
coefficients.

The simple linear regression model is given by

' = El-[]"‘ E|.T+ =

where ¢ 1s the random error term.




11-1 Empirical Models

We think of the regression model as an empirical model.

Suppose that the mean and variance of € are 0 and &2,
respectively, then

.Ir.|:l_ }"rl.".'} — f:li|3[] + |3|.".' + 'E_} — |3-|:| + |3-|.".' + 1'!'.-[.'E:| — |3-|:| + |3-|.".'

The variance of Y given x 1s

MY x)=ViBo+ Bx +e) =V(By +Bix)+ Fle) =0+ o = o

If x 1s fixed, € determines the properties of Y.



11-1 Empirical Models

 The true regression model 1s a line of mean values:

Hylxr = Po + Py

where [3, can be interpreted as the change in the mean of Y for
a unit change 1n x.

* Also, the variability of Y at a particular value of x 1s
determined by the error variance, 2.

 This implies there 1s a distribution of Y-values at each x and
that the variance of this distribution is the same at each x.




11-1 Empirical Models
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11-2 Simple Linear Regression

* The case of simple linear regression considers a single
regressor or predictor x and a or
Y.

» The expected value of Y at each level of x is a random
variable:

E(Y|x) = By + PByx

* Assume each observation, Y, can be described by the model

Y = E[]+ E|.".'+ L=



11-2 Simple Linear Regression

- Suppose that we have n pairs of observations
(X1’ y1)v (X2! y2)’ = (Xnv yn)

J—
Obszarved valua _,L”-
Data () |

Figure 11-3

Deviations of the LT oo la
data from the ’
estimated

. L
regression model.



11-2 Simple Linear Regression

- The method of least sguares Is used to

estimate the parameters, 3, and 3, by minimizing
the sum of the squares of the vertical deviations.

J—
Obszarved valua _,L’f-
Data () |

Figure 11-3

Deviations of the LT oo la
data from the ’
estimated

regression model.



11-2 Simple Linear Regression

- N observations in the sample can be expressed as

= By + Py x; + € i=1.2.....n

« The sum of the squares of the deviations of the
observations from the true regression line 1s

L E = Z Vi — Bo — E'l-Tf]:



11-2 Simple Linear Regression

L E = 2 Vi — Bo — |3|-T|':|:

The least squares estimators of By and By, sav, By and By. must satish

I'-|I.|II P . .
=23 (- By - Buv) =
r-JEI‘III ETNLY ﬁ - ED EI I:I

i - ] .

— — —_-?T_IrT-— — X: )X —
r'.||3| I.‘ml.h ﬁ iy E‘EI E’I |:| i




11-2 Simple Linear Regression

Simplhitving these two equations yields

nBo + By E:I X; = zl: V,
E[] IE: X; + E'H IE 1.' = E VA L1163}

Equations 11-6 are called the least squares normal eguations. The solution to the normal
equations results i the least squares estimators By and B




11-2 Simple Linear Regression

Definition

The least squares estimates of the intercept and slope 1n the simple linear regression

model are

where v = (1/m) 2, v, and X = (1/n) Z;_, x.

(L1-7)

(11-5)




11-2 Simple Linear Regression

Notation




11-2 Simple Linear Regression
Example 11-1

We will fit a simple hnear regression model to the oxveen purity data in Table 11-1. The
following quantities may be computed:

20 20
n =20 E x; = 23.92 E v, = LE43 21 X = 11960 vy =92 1605

i=1 i=1
20 20

vi = 1700445321 Y a7 = 292 Z* = 2214 6566
i1 i1
20 2
20 Zl" (23.92)
Sex = Xi — - _— = 202892 — + = W.Hallak

and

20 20
- ( E.‘X E; 1> (23.92)(1.843.21)
. 22146566 — : - = 10.17744

-"ll:l

L
Tt
Il
;_-
I
__l
Il



11-2 Simple Linear Regression

Example 11-1

Therefore. the least squares estimates of the slope and intercept are

. Sy 1017744 404748
P = S..  O6soss o

and

Bo =T — BT = 921605 — (14.94748)1.196 = 74.2833

The fitted simple hnear regression model (with the coeflicients reported to three decimal places) is

§ = 74283 + 14.947x

Thiz model 15 plotted 1n Fig. 11-4, along with the sample data.



11-2 Simple Linear Regression

Example 11-1

Figure 11-4 Scatter plot
of oxygen purity y
versus hydrocarbon
level x and regression
model

y =74.20 + 14.97x.
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Table 11-2  Minitab Ourpue for the Croygen Purity Data in Example 11-1

Regression Analysis
The regression equation is

Purity = 74.3 + 14.9 HC Level

Predictor Coef SE Coef
Constant T4, 283 - 1.593
HC Level 14.947 -3, 1.317
5 = |.087 R-5q = 87.7%

Analysis of Variance

Source )F B
Regression 1 152,13
Residual Error 18 21.25 =S5,
Total 19 173,38

Predicted Values for New Observations

Mew Obs Fit SE Fit
1 ®o231 0.354
Values of Predictors for Mew Observations

Mew Obs HC Lewvel
1 L.00

T

46,62
11.55

P

0. 0D
0. DD

R-Sqiad)) = 87.1%

4% I

152,13

95.0%
(85486,

118 - v

CI
89.975)

128,86

G5.0%
(86.830,

PI
91.632)

0,000




11-2 Simple Linear Regression

The fitted or estimated regression line 13 therelore

_:.-' - EI[] + |3|.".' (] -4
MNote that each pair of observations satislies the relatonship

Yi = Eu + Em'.- = 1,2.....1

where ¢, = v, — v, 15 called the residual. The residual describes the error in the fit of the

model to the ith observation v, Later in this chapter we will use the residuals to provide in-
formation about the adequacy of the fitted model.




11-2 Simple Linear Regression

Estimating o?

The error sum of squares 1s
Ssp= Y ei= > (- 1)
i=1 =1

The expected value of the error sum of squares 1s

E(SSy) = (n — 2)c2.



11-2 Simple Linear Regression

Estimating o?

An unbiased estimator of ?is

.2 OS5
a T n—2

(11-13)

where SS; can be easily computed using

§Sg = 857 — B1S,

(11-14)

where

SS,=> (v,=¥)Y =)y —ny’
i=1 i=1

is the total sum of squares of y.




11-2 Simple Linear Regression
Example

Consider the data in Example 11-1. Find &*

20 20

n=20 Sx=2392 3y =184321 T=1190 7=921605
i=1 i=1

> Given before

20 0 20
Sy = 170,044.5321 > x? = 292892 > x;y; = 2,214.6566
=1 : =l

i=1 -’

N

S, =10.17744 B =14.94748

Calculated before
S =0.68088

SS, =Y (y,—y) =Dyl —ny’ =170044.5321-20(92.1605)* =173.376895
i=1 i=1

SS, = 8S, — .S, =173.376895 —14.94748(10.17744) = 21.2498141488

m 21.2498141488 .




11-3 Properties of the Least Squares

Estimators

 Slope Properties

E(B1) = B

e Intercept Properties

f.f ED} — |3-|:| and



11-3 Properties of the Least Squares
Estimators

In simple linear regression the estimated standard error of the slope and the
estimated standard error of the Intercept are

N
se(B1) = 3

Ly

and sel Po) = \ & [% + ;‘]

SS5g
where a
n— 2

k-2




11-4 Hypothesis Tests in Simple Linear
Regression

11-4.1 Use of t-Tests

e. are NID(0,07°)
Y, are NID(5,t5X;, 02)
lél iS N (IBI > Gz/Sxx)




11-4 Hypothesis Tests in Simple Linear
Regression

11-4.1 Use of t-Tests

Suppose we wish to test

Hy: By = Bro
Hi: By # P
An appropriate test statistic would be
[y = B — Pio with n-2 degrees of freedom

S
\V&2/S,,



11-4 Hypothesis Tests in Simple Linear
Regression

11-4.1 Use of t-Tests

The test statistic could also be written as:

-

Bi — Bio
sel 3 |]

We would reject the null hypothesis 1f

Iy =

‘flli" = fn:tﬁ.n—_"-'



11-4 Hypothesis Tests in Simple Linear
Regression

11-4.1 Use of t-Tests
Suppose we wish to test

Hy: Bo = Bog
Hy: By # Bog

An appropriate test statistic would be

o ]

T,;;. _ I BEJ T BIZJ_IZI _ - BIJ Tﬁ [—J’-IJ_EI
.9 ] X- sel o)
\ S e —+ <

XX 3

with n-2 degrees of freedom




11-4 Hypothesis Tests in Simple Linear
Regression

11-4.1 Use of t-Tests

We would reject the null hypothesis 1f

‘flli" = fn:tﬁ.n—_"-'



11-4 Hypothesis Tests in Simple Linear
Regression

11-4.1 Use of t-Tests
An important special case of the hypotheses of [3; 1s

H”: [:})| = {J
H|: B| =+ ()

These hypotheses relate to the significance of regression.

Failure to reject H, 1s equivalent to concluding that there
1s no linear relationship between x and Y.



11-4 Hypothesis Tests in Simple Linear
Regression

The hypothesis H,: 34, = 0 is not rejected.



11-4 Hypothesis Tests in Simple Linear
Regression

The hypothesis H,: 34 = 0 is rejected.



11-4 Hypothesis Tests in Simple Linear
Regression

Example 11-2

We will test for significance of regression using the model for the oxygen purity data from

Example 11-1. The hypotheses are

HyB, =0
H|: B| = 0

and we will use @ = 0.01. From Example 11-1 and Table 11-2 we have

By = 1497 n =20, S, =0068088. & =118

so the r-statistic in Equation 10-20 becomes

g| B B| B 14,947 —

V&S, selBi) VI18/0.68088

-
L

Iy =

= 2.88, the value of the test statistic is very far

Since the reference value of 118 f5505.15
= () should be rejected. The P-value for this test

into the critical region, implying that Hy: 3
- -y — - . =
1s =123 > 107", This was obtained manuallv with a calculator.




Table 11-2  Minitab Ourpue for the Croygen Purity Data in Example 11-1

Regression Analysis
The regression equation is

Purity = 74.3 + 14.9 HC Level

Predictor Coef SE Coef T P
Constant T4, 283 - 1.593 46,62 i, Qi
HC Level 14.947 --— 3 1.317 11.35 0, Qi
S = 1.087 R-Sq = 87.7% R-Sq(adj) = 87.1%

Analysis of Variance

Source )F B S F P
Regression | 152,13 152,13 128,86 0,000
Residual Error 18 21.25 =S5, 118 -

Total 19 173,38

Predicted Values for New Ohservations

Mew Obs Fit SE Fit Q5.0% 1 Q5.0%  PI

1 89,231 0,354 (82.486, 89.973)  (B6.830, 91.632)
Values of Predictors for New Observations

Mew Obs HC Lewvel
1 L.00




11-4 Hypothesis Tests in Simple Linear

Regression
11-4.2 Analysis of Variance Approach to Test
Significance of Regression

The analysis of variance 1dentity 1s

i M

S - = S i-F + EJ'I.H-.- - i) (11-24)

.'_l - P

/T TN
Total corrected Regression sum Error sum
sum of squares of squares of squares

Symbolically,

SSr = SSg + SSg (11-25)

VAV

Degrees of freedom: n-1 1 n-2




11-4 Hypothesis Tests in Simple Linear

Regression

11-4.2 Analysis of Variance Approach to Test
Significance of Regression

If the null hypothesis, H,: 3, = 0 1s true, the statistic

Fy

SSg/1

M5,

" SSg/(n — 2)

MSg

(11-26)

follows the F'| , distribution and we would reject 1f

f() > o,l,n-2°




11-4 Hypothesis Tests in Simple Linear
Regression

11-4.2 Analysis of Variance Approach to Test
Significance of Regression

The quantities, MSg and MSg, are called mean squares.

Analysis of variance table:

Table 11-3  Analysis of Variance for Testing Signihcance of Regression

Source of Sum of Degrees of Mean

Variation Squares Freedom Square Fa
RE‘EJE‘SSiG]] Shp = |_5:|5'_,,-_|_. | MSg :1-2?'5.{_."'.'1'1'-55
Error 85p = 55 — ByS,. n—2 M,

Total 55, | n—

Mote that M5 = &°,




Table 11-2  Minitab Ourpue for the Croygen Purity Data in Example 11-1

Regression Analysis
The regression equation is

Purity = 74.3 + 14.9 HC Level

Predictor Coef SE Coef T P
Constant T4, 283 - 1.593 46,62 i, Qi
HC Level 14.947 --— 3 1.317 11.35 0, Qi
S = 1.087 R-Sq = 87.7% R-Sq(adj) = 87.1%

Analysis of Variance

Source D¥F ot 1% 3 F P
Regression | 152,13 SSg 152,13 128,86 FREY
Residual Error 18 21.25 - S5 118 -

Total 19 17338 SS_

Predicted Values for New Observations

Mew Obs Fit SE Fit Q5.0% C1 Q5.0% PI

1 89,231 0,354 (88.486, 89.975)  (86.830, 91.632)

Values of Predictors for Mew Observations

Mew Obs HC Lewvel
1 L.00




11-4 Hypothesis Tests in Simple Linear
Regression

Example 11-3

We will use the analysis of variance approach to test for significance Gf regression ll‘i[[]*f the
oxvgen purity data model from Example 11-1. Recall that §5; = 17338, B, = 14.947,
S = 1017744, and n = 20. The regression sum of squares 1s

SSg = B1S,, = (14.947)10.17744 = 152.13
and the error sum of squares 1s

= 21.2

A

fsd

SSp = SS; — SSp = 173.38 — 152.1

The analysis of variance for testing Hy: By, = 0 1s summarized in the Minitab output in
Table 11-2. The test statistic is fg = MSp/MS; = 152.13/1.18 = 128.86, for which we find
that the P-value is P == 1.23 X 10", so we conclude that 3, is not zero.

There are frequently minor differences in terminology among computer packages. For
example, sometimes the regression sum of squares is called the “model™ sum of squares, and

the error sum of squares 1s called the “residual”™ sum of squares.



11-4 Hypothesis Tests in Simple Linear
Regression

Note that the analvsis of variance procedure for testing for significance of regression is
equivalent to the f~test in Section 1 1-3.1. That is, either procedure will lead to the same conclusions.
This is easy to demonstrate by starting with the f-test statistic in Equation 11-19 with B,, = 0, say

Iy = —/— (11-27)

(11-28)

Note that 77 in Equation 11-28 is identical to Fy in Equation 11-26 It is true, in general, that
the square of a t random variable with v degrees of freedom is an F random variable, with one
and v degrees of freedom in the numerator and denominator, respectivelv. Thus, the test using
I 1s equivalent to the test based on Fy,. Note, however, that the f-test 1s somewhat more flexi-
ble in that it would allow testing against a one-sided alternative hvpothesis, while the F-test 1s
restricted to a two-sided alternative.




11-5 Confidence Intervals

11-5.1 Confidence Intervals on the Slope and Intercept

Definition

Under the assumption that the observations are normally and mdependently distributed,
a 100{1 — a)% confidence Interval on the slope B, in simple linear regression 1s

El — lui2. 2 Ij-: = E“I_ = E‘I_ T Inf2a—2 ﬁz [11—29]
. 51.'.1.' T IIII" 31'.1'

Siumlarly, a 100{1 — «)% confidence Interval on the Intercept B, is

i 1 ¥
Bo — fagu-24 0" [; T3 ]

T

| Fe
E+5] (11-30)

aw

=Py =Byt a2y 'fr‘[




11-6 Confidence Intervals

Example 11-4

We will find a 953% confidence intu'x' il on the slope of the regression line using the data in
Example 11-1. Recall that 3, = 14.947, S., = 0.68088. and - = 1.18 (see Table 11-2).
Then, from Equation 10-31 we hml

-

[ &7 e
B| rr|||w|k~~\%_££:}) £B|+I|_II_I"||"\\II}_

or

= 14947 + 2,101, |——
\ 0.68088 ).O8URS

f‘n

14947 — 2.101

A

=By = 14947 + 2101

This simplifies to

12.197 = 3, = 17.697



11-5.2 Confidence Interval on the Mean Response

11-5 Confidence Intervals
Ly|x, = Bo T Bixg

= L, =3+ [(x,-%)  cov(Y,5)=0

: 1 (x,-%)
Vfy,) = 0* |+ 0D
’ n S

XX

A 100{]1 — «)% confidence Interval about the mean response at the value of
X = Xp, SAY LY |x, 18 given by

. IR (xp — ?]2
Wi — o224/ 07 | + 5

T

-,
L, b J]] (11-31)

e HeF L = I:"’i"l.u] T 'r-:i.-"E.H—E".,l & |:F + 5.

where jLy|, = Po + Pivo is computed from the fitted regression model.




11-5 Confidence Intervals

Example 11-5

We will construct a Y53% confidence interval about the mean response for the data in Example
[1-1. The fitted model 1s py,, = 74.283 + 14.947x;, and the Y5% confidence interval on
Ly, I8 found from Equation 11-31 as

t I Wl -
0.025,18 ] (xp — 1.1960)

— +
20 0. 6808

Suppose that we are interested in predicting mean oxvgen purity when x; = 1.00%. Then

Ly(y,, = /4283 + 14.947(1.00) = 89.23

and the 953% confidence interval 1s

| (1.00 — 1,1*,}(1{}:]3'}

9023 + 21014 1.18 n
{q j \ 20) 0.68088



11-5 Confidence Intervals

Example 11-5

or

—

80.23 = (.75

Therefore, the 95% confidence interval on py)j o 15

88.48 = py)100 = 89.98

Minitab will also perform these calculations. Refer to Table 11-2. The predicted value of v at
x = 1.00 is shown along with the 95% CI on the mean of v at this level of x.




11-5 Confidence Intervals

Example 11-5

By repeating these calculations for several different values for x; we can obtain confi-
dence limits for each corresponding value of wy,. Figure 11-7 displays the scatter diagram
with the fitted model and the corresponding 95% confidence limits plotted as the upper and
lower lines. The 93% confidence level applies only to the interval obtained at one value of x
and not to the entire set of x-levels. Notice that the width of the confidence interval on py/,

Increases as |X — X| increases.



11-5 Confidence Intervals
Example 11-5

102

Scatter diagram of oxygen
purity data with fitted

regression line and 95 percent
confidence limits on piy,.

Ceygen purity ¥ (%)

.87 1.07 1.27 1.47 o
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11-6 Prediction of New Observations

The point estimator of the new or future value of the response, Y, at x,

- -

Yo = Bo Q X0

e, =Y, — ¥,
- S N B
Vie,))=V({,-Y)=0 1+n+ S
= E(e;)=0

eﬁ is normally distributed with mean 0 and variance V'(e;)



11-6 Prediction of New Observations

Definition

A 100{1 — o) % prediction Interval on a future observation ¥ at the value x, 15
given by

_1:1|:| - 'r|:|:."2.r1—2".|L a” |l + =+

-

(g —¥) (11-33)

|
= ¥y =g + tyam—ay |1 + -+
|:| s |:| I:I_l'l LFl .cl'llh [ R .5_-._-_-._-

The value 7y is computed from the regression model ¥4 = Bo + PBixo




11-6 Prediction of New Observations

Example 11-6

To illustrate the construction of a prediction interval, suppose we use the data in Example 11-1
and find a 93% prediction interval on the next observation of oxygen purity at x; = 1.00%,
Using Equation [1-33 and recalling from Example T1-3 that 1, = 89.23, we nd that the
prediction interval 1s

1 (1.00 — 1.1960)°]
N |
20 (.68088

8§0.23 — 2,]{}].\5"1,1?\' | +

N -

}_ 10 ,.-] ] | (1.00 — 1.1960)
= VY, =8923 + 2101/ 1.18| 1 + — + |
0 * \ L35 0.68088




11-6 Prediction of New Observations

Example 11-6

which simplifies to

Minitab will also calculate prediction intervals. Refer to the output in Table 11-2. The 93% Pl
on the future observation at x, = 1.00 1s shown in the display.

By repeating the foregoing calculations at different levels of x;. we mav obtain the 93%
prediction intervals shown graphically as the lower and upper lines about the fitted regression
model in Fig. 11-8. Notice that this graph also shows the 93% confidence limits on py,,
calculated in Example 11-5. [t illustrates that the prediction limits are always wider than the

conhidence limits.




11-6 Prediction of New Observations

Example 11-6

Scatter diagram of
oxygen purity data with
fitted regression line,
95% prediction limits
(outer lines) , and 95%

confidence limits on piy.

1oz

o3

Oxggen purity ¥ (%)

o0

.87 . 1.07 1.27 1.47 1.57
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11-7 Adequacy of the Regression Model

 Fitting a regression model requires several assumptions.

1. Errors are uncorrelated random variables with mean
ZEro;

2. Errors have constant variance; and,

3. Errors be normally distributed.

* The analyst should always consider the validity of these
assumptions to be doubtful and conduct analyses to examine
the adequacy of the model



11-7 Adequacy of the Regression Model

11-7.1 Residual Analysis

 The residuals from a regression model are e, =y, - ., where y,
1s an actual observation and y, 1s the corresponding fitted value
from the regression model.

 Analysis of the residuals is frequently helpful in checking the
assumption that the errors are approximately normally distributed
with constant variance, and 1n determining whether additional
terms in the model would be useful.

Plot the residuals
- 1n time sequence,
- against y.
- against x;



11-7 Adequacy of the Regression Model

11-7.1 Residual Analysis

Figure 11-9 Patterns for
residual plots.

(a) satisfactory, 0 — o —
(b) funnel, . ) '
(c) double bow,
(d) nonlinear.

(

b) and (c) indicate
inequality of variance

For (b), try o[ - 2 0
transformations TP

\/;, Iny, or 1/y



11-7 Adequacy of the Regression Model

Example 11-7

Table 11-4 Owxyoen Purity Data from Example 11-1, Prediceed Values, and Residuals

Hydrocarbon  Oooygen Predicted | Residual Hydrocarbon  Oooygen Predicted | Residual

Level, x Purity. v Value, ¥ |e=p— ¥ Level, x Purity, ¥ Value, ¥ |e=y— ¥

l 0.99 20,01 B9.06500% 0.940991 11 1.1% 2354 9206318% 1476811
2 1.02 8905 BR5IB136 | —0.468136 12 1.15 9252 9l.6l4062 0.905938
3 L.15 9143 91464353 | —0.034353 13 0.98 2056 BR.919300 1640700
4 1.2%9 2374 93560279 0.179721 14 1.01 8954 BR.36B4ZT OL1TLSTS
5 .46 96,73 96105332 0.624668 15 1.11 B9.B5  90.E6551T | —LO15517
& 136 94.45 94608242 | —0.158242 & 1.20 2039 92212898 | — 1822855
7 0.87 87.59  BT.272501 0317499 17 126 2325 93111152 0. 138848
B 1.23 QL77  92662025 | —0.8592025 & 1.52 2341 94.009406 | —0.5599406
9 1.55 99,42 97452713 1.96T287 15 1.43 2498 95656205 | —0.6T76205
L 1.40 9365 95207078 | —1.557078 20 0.95 7.33 BEATOLTI | —1.140173




11-7 Adequacy of the Regression Model
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Example 11-7
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11-7 Adequacy of the Regression Model

11-7.2 Coefficient of Determination (R?)

e The quantity
_SSe_ S5
- SSy SSy
is called the coefficient of determination and is often
used to judge the adequacy of a regression model.

e <R2<1;

R_"-'

« We often refer (loosely) to R? as the amount of
variability in the data explained or accounted for by the
regression model.



11-7 Adequacy of the Regression Model

11-7.2 Coefficient of Determination (R?)

 For the oxygen purity regression model,
R2 = SS,/SS;
=152.13/173.38
=0.877

e Thus, the model accounts for 87.7% of the
variability 1n the data.
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