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7-1 Introduction

*The field of statistical inference consists of those
methods used to make decisions or to draw conclusions
about a population.

 These methods utilize the information contained in a
sample from the population in drawing conclusions.

* Statistical inference may be divided into two major
areas:

e Parameter estimation

* Hypothesis testing



7-1 Introduction

Parameter estimation examples

*Estimate the mean fill volume of soft drink cans: Soft drink cans
are filled by automated filling machines. The fill volume may
vary because of differences in soft drinks, automated machines,
and measurement procedures.

 Estimate the mean diameter of bottle openings of a specific
bottle manufactured in a plant: The diameter of bottle openings
may vary because of machines, molds and measurements.



7-1 Introduction

Hypothesis testing example
2 machine types are used for filling soft drink cans: m1 and m2

* You have a hypothesis that m1 results in larger fill volume of
soft drink cans than does m2.

*Construct the statistical hypothesis as follows:

e the mean fill volume using machime m1 is larger than the
mean fill volume using machine m2.

 Try to draw conclusions about a stated hypothesis.



7-1 Introduction

Suppose that we want to obtain a point estimate of a population parameter. We know that
betore the data i1s collected, the observations are considered to be random variables, sav
Xi. X5, ... X, Therefore, any function of the observation, or any ‘sldllﬂ[ll.. 1s also a random
variable. For example, the sample mean X and the sample variance S? are statistics and thev
are also random variables.

* Since a statistic 1s a random variable, it has a probability distribution.

 The probability distribution of a statistic is called a sampling distribution

Definition

A point estimate of some population parameter # is a single numerical value fofa
statistic ®. The statistic ® 1s called the point estimator.
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7-1 Introduction

Estimation problems occur frequently in engineering. We often need to estimate

® The mean p of a single population
. M . . . N
® The variance o= (or standard deviation o) of a single population
® The proportion p of items 1n a population that belong to a class of interest
e The difference in means of two populations, u; — W

 The difference in two population proportions, p; —



7-1 Introduction

Reasonable point estimates of these parameters are as follows:

® For . the estimate 1s L = X, the sample mean.
7 . . ~ ] 1 .

e For o~ the estimate 1s ¢~ = 57, the sample variance.

e For p, the estimate 1s p = x/n, the sample proportion, where x is the number of items
in a random sample of size n that belong to the class of interest.

® For g, — po. the estimate 1s Ly — L, = X| — X,. the difference between the sample
means of two independent random samples.

e For p; — p,.the estimate i1s p; — j,. the difference between two sample proportions
computed from two independent random samples.



7.2 Sampling Distributions and the
Central Limit Theorem

Statistical inference 1s concerned with making decisions about a
population based on the information contained in a random
sample from that population.

Definitions:

The random vanables X, X5, .. ., X, are a random sample of size n if (a) the X5 are in-
dependent random variables, and (b) every X, has the same probability distnbution.

A statistic 1s any function of the observations in a random sample.

The probability distribution of a statistic is called a sampling distribution.




7.2 Sampling Distributions and the
Central Limit Theorem

The probability distribution of X s called the sampling distribution of mean.

Suppose that a random sample of size n is taken from a normal population with mean # and
variance 2

Each observation X, X,,...,X, 1s normally and independently distributed with mean # and
variance g

Linear functions of independent normally distributed random variables are also normally
distributed. (Reproductive property of Normal Distr.)

The sample mean X . X1 + X , Tt X n has a normal distribution
n ™
with mean _ILI+ILI+...+ILI_

) n

and variance

11



7.2 Sampling Distributions and the
Central Limit Theorem

If we are sampling from a population that has m@m probability dist@ the

sampling distribution of the sample mean will still be approximatelv normal with mean . and

. a9 . : : . a " . .
variance o /n, if the sample size n 1s large. This 15 one of the most useful theorems in statis-
tics, called the central limit theorem. The statement 15 as follows:

If X, X, .... X, 15 a random sample of size n taken from a population (either finite
or infinite) with mean p and finite variance o, and if .X' is the sample mean, the

limiting form of the distribution of

_X-w
o/ \Vn

Z (7-1)

as u —» o, 15 the standard normal distribution.
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7.2 Sampling Distributions and the
Central Limit Theorem

Distributions of average scores

from throwing dice. C% omede | "
Practically 1 |
. . . i 2 3 4 5 Ii:l X
If n >30, the normal approximation () Two dice
will be satisfactory regardless of the
shape of the population. o ‘ |1,

1 by 3 4 5 6 x

fcd Threa dica

If n<30, the central limit theorem will
work 1f the distribution of the
population is not severely nonnormal.

|I|||| ||||I|
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i) Fiva dicea
(continuous, unimodal, symmetric)
.||||I||||| |||||“|||.
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7.2 Sampling Distributions and the
Central Limit Theorem

Example 7-1

An electronics company manufactures resistors that have a mean resistance of 100 ohms and a standard
deviation of 10 chms. The distribution of resistance is normal. Find the probability that a random sam-
ple of » = 23 resistors will have an average resistance less than 95 ohms.

Mote that the sampling distribution of X is normal. with mean pg = 100 chms and a standard
deviation of

Therefore, the desired probability corresponds to the shaded area in Fig. 7-1. Standardizing the point

¥ = 905 inig. 7-2we find that

05 — 100 _
—— -

— —
=

—2.5

and therefore.

P(X < 05) = P(7 < —2.5)
= (.0062



7.2 Sampling Distributions and the
Central Limit Theorem

95 100 X

Figure 7-2 Probability for Example 7-1
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7.2 Sampling Distributions and the
Central Limit Theorem

Example 7-2

X has a continuous distribution:

Find the distributon of the sample

mean of a random sample of size
n=407

1/2, 4<x<6
f(x)= .
0, otherwise

u=5 o =(6-4)°/12=1/3

By C.L.T, X is approximately normally
distributed with

=5 o =1/[340]=1/120

03=1/120

- 5 0

X
Figure 7.3 The distributions of X and X
for Example 7-2.



7.2 Sampling Distributions and the
Central Limit Theorem

Two independent populations
— st population has mean 4 and variance o)

: : ,
— 2nd population has mean 1 and variance ¢

The statistic X, — X,  has the following mean and variance :

mean - Uy g = Hg —Hg =H—H,

- 2 2 2
and variance Oy o =0y, +0; =—+

17



7.2 Sampling Distributions and the
Central Limit Theorem

Approximate Sampling Distribution of a
Difference in Sample Means

If we have two independent populations with means p, and ., and variances o7 and
a5 and 1f X} and X, are the sample means of two independent random samples of
sizes 1y and #1, from these populations, then the sampling distribution of

X% (- )
Voi/n + oifn

£

(7-4)

15 approximately standard normal, if the conditions of the central linut theorem
applv. If the two populations are normal, the sampling distribution of £ is exactly

standard normal.

18




7.2 Sampling Distributions and the
Central Limit Theorem Ex.7-3

« Two independent and approximately normal populations
— X,: life of a component with old process M =5000 o, =40
— X,: life of a component with improved process 1, =5050 o, =30
e n~=16, n=25
«  What is the probability that the difference in the two sample means X, — X
is at least 25 hours?

ol 40° _ _
Hy, = 1 =5000 o5 =—t=—=100 Hsg, %, = Hg, — Hg, =50
1
o 2 _ 0y _ 30° _ 2 2 2
ﬂ)?z _ll’l2 _5050 G)zz - n2 - 25 _36 O-)zz_)zl :O-)zz +O-)z1 :136

25— 1ty _
P(X, - X >25):P[Zz 'UXZXIJ:P(Z2251356()]:P(Z2—2.14)20.9838

19



7-3 General Concepts of Point Estimation

 We may have several different choices for the point
estimator of a parameter. Ex: to estimate the mean of a
population
— Sample mean
— Sample median

— The average of the smallest and largest observations in the sample
* Which point estimator 1s the best one?

* Need to examine their statistical properties and develop
some criteria for comparing estimators

* For instance, an estimator should be close to the true value
of the unknown parameter

20



7-3 General Concepts of Point Estimation

7-3.1 Unbiased Estimators

Definition

The point estimator ® is an unbiased estimator for the parameter § 1f
E(®)=48 (7-5)

If the estimator 15 not unhased, then the difference

bias = E{@}} — 8 (7-6)

is called the bias of the estimator ®.

=» When an estimator is unbiased, the bias is zero.
21



7-3 General Concepts of Point Estimation

Are X and S* unbiased estimators of ¢ and &>?

E(X) = E(1x1+lx2+...+lxnj:nly‘=’y
N N N n

_Z(Xi_>z)2 1 n
E(S*)=E| 2 = E(
n—1 n—1 ,

:ﬁE zn:(xﬁ—zixﬁ)?)j:LE( P 2>?xi+zn:>?2j
Tl & _ _ _

> Il

-1 E Zxﬁ—zn)?%nizj:LE( xf—nizj
=1 [

:L(ZE(xﬁ)—nE(iz)j »



7-3 General Concepts of Point Estimation

Example 7-1 (continued)

V(X})=0® =E(X) — i’ 2{E(X}) =0 + 4

2 2
V(X)z%zE(Xz)—(E(i))z=E(>?2)—y2:>E(iz)z%ﬂﬂ
b ] H ’. ’.
E(5°) = m— { Z{ (" + o°) — H[:]_LE + szf.!']l:|
] . . .
= (mz + no” — np” — o)
v o

o
Unbiased !
23



7-3 General Concepts of Point Estimation

* There 1s not a unique unbiased estimator.
« n=10data 12.8 9.4 8.7 11.6 13.1 9.8 14.1 8.5 12.1 10.3

 There are several unbiased estimators of W

— Sample mean (11.04)

— Sample median (10.95)

— The average of the smallest and largest observations in the sample (11.3)
— A single observation from the population (12.8)

e (Cannot rely on the property of unbiasedness alone to select the
estimator.

* Need a method to select among unbiased estimators.

24



7-3 General Concepts of Point Estimation

7-3.2 Variance of a Point Estimator

Definition

[t we consider all unbiased estimators of 6, the one with the smallest variance 1s
called the minimum variance unbiased estimator (MVUE).

The sampling distributions of two
unbiased estimators

N

®, and O,.

Distribution of 8,

Distribution of @,

25



7-3 General Concepts of Point Estimation

7-3.2 Variance of a Point Estimator

If X}, X5, ..., X, 15 a random sample of size » from a normal distribution with mean
, i =5 .
. and variance o, the sample mean X 1s the MVUE for p.

V(X)=0’
vo?):"—2
n

V(X)<V(X,) forn>2

The sample mean 1s better estimator of p than a single observation X
26



7-3 General Concepts of Point Estimation

7-3.3 Standard Error: Reporting a Point Estimate

Definition

The standard error of an estimator ® is its standard deviation, given by

—

oy = V' V(®). If the standard error involves unknown parameters that can be esti-

mated, substitution of those values into oy produces an estimated standard error,

denoted by o 5.

27



7-3 General Concepts of Point Estimation

7-3.3 Standard Error: Reporting a Point Estimate

Suppose we are sampling from a normal distribution RH[HI]I]LJP]LLLH]Lllaﬂlcﬂluh a°. Now
the distribution of X is normal with mean w and variance o/n. so the standard error of X i

[ we(

28



7-3 General Concepts of Point Estimation

Example 7-5

An article in the Jowrnal of Heat Transfer (Trans. ASME, Sec. C, 96, 1974, p. 3Y) described
a new method of measuring the thermal conductivity of Armco iron. Using a temperature of
100°F and a power mnput of 550 watts, the following 10 measurements of thermal conductiv-
ity (in Btu/hr-ft-°F) were obtained:

41.60,41.48,42.34,41.95, 41.86,
42.18.41.72,42.26, 41.81. 42.04

A point estimate of the mean thermal conductivity at 100°F and 550 watts is the sample mean or

¥ = 41.924 Btu/hr-fi-°F

29



7-3 General Concepts of Point Estimation

Example 7-5 (continued)

The standard error of the sample mean is o = o/ Vn, and since o is unknown. we may replace

r

it by the sample standard deviation s = (0.284 to obtain the estimated standard error of X as

R 5 0.284
o7 = —= = —== = 0.0898
‘ vV V10

Notice that the standard error is about (.2 percent of the sample mean. implying that we have ob-
tained a relatively precise point estimate of thermal conductivity. [f we can assume that thermal
conductivity is normally distributed, 2 times the standard error is 26 ¢ = 2{0.0898) = 0.1796,
and we are highly confident that the true mean thermal conductivity 1s with the interval
41.924 = 0.1756, or between 41.744 and 42.104.

Probability that true mean is within )z T 2&>? is 0.9545
30



7-3 General Concepts of Point Estimation

7-3.4 Mean Square Error of an Estimator

There may be cases where we may need to use a biased estimator.

So we need another comparison measure:

Definition

The mean squared error of an estimator ® of the parameter f 1s defined as

MSE(®) = E(® — §)’ (7-7)

31



7-3 General Concepts of Point Estimation

7-3.4 Mean Square Error of an Estimator
MSE (©) = E(© — )’
A 2
_ E[ E(@)] [e— E(@)]
=V (O) + (bias)?

The MSE of © is equal to the variance of the estimator plus the squared bias.
If (:) 1s an unbiased estimator of 6, MSE of (:) is equal to the variance of (:)

32



7-3 General Concepts of Point Estimation

7-3.4 Mean Square Error of an Estimator
V (®)+ (bias)”

E[6-E@®) [ +[o-E@)| 1

- E [(3)2 —20E(®) + Ez((:))] +[92 —20E(0) + E%@)]
= E(©?)-2E(O)E(®) + E*(©) + %> —20E(©) + E*(©)
= E(©*)-E*(®) + 6% —20E(O)+ E*(O)

= E(©%) + 0% —20E(O)

L E@-0) j

MSE (©) .



7-3 General Concepts of Point Estimation

7-3.4 Mean Square Error of an Estimator

The mean squared error 1s an important criterion for comparing two estimators. Let @
and ©, be two estimators of the parameter 8, and let MSE {E]'J} and MSE (8,) be the mean
squared errors of E]J and 'E]':u Then the relative efficiency of &, to E]'J 15 defined as

MSE(®))
MSE(®,)

(7-8)

If this relative efficiency 1s less than 1, we would conclude that ® 1s a more efficient estima-
tor of  than ®,, in the sense that it has a smaller mean square error.

34



7-3 General Concepts of Point Estimation

7-3.4 Mean Square Error of an Estimator

©) biased but has
1

small variance Cistribution of @1

©) unbiased but has
2 large variance

Distribution of 8 2

¢ EiB)

N

An estimate based on @1 would more likely be close to the true value of 9

than would an estimate based on (:)2. :

35



7-3 General Concepts of Point Estimation

7-3.4 Mean Square Error of an Estimator

Exercise: Calculate the MSE of the following estimators.
O - X

6, -

X

36



|7-4 Methods of Point Estimation

How can good estimators be obtained?

7-4.1 Method of Moments

Let X, X5, ..., X, be arandom sample from the probability distribution f(x), where

fix) can be a discrete probability mass function or a continuous probability density
function. The kth population moment (or distribution mement) is E(X*), k =

1,2, ....The corresponding kth sample moment is (1/n) ELL.‘{'f", k=1,2,....

Let X, X5, ..., A, be a random sample from either a probability mass function
or probability density function with m unknown parameters 8, 0,.....0,. The
moment estimators 'léll, @2, ,@m are found by equating the first m population
moments to the first m sample moments and solving the resulting equations for the
unknown parameters.




|7-4 Methods of Point Estimation

Example 7-7

“411]1lm~a-: that X;. X5, ... . X}, 15 a random sample from a nm'nml L“‘it]'[hl.lt[ﬂl'l with parameters |
and o FL‘rl '[lh, nor nm] distribution E(X) = p and E(X?) = p? + o Equating E(X) to X and
E(X?) m; ST X7 gives

=1

- 1 7

: _ ] \
EX)=p=T  pt+o’=5 34

Solving these equations gives the moment estimators

Notice that the moment estimator of o 1s not an unbiased estimator.

38



|7-4 Methods of Point Estimation

7-4.2 Method of Maximum Likelihood

Suppose that X 1s a random variable with probability distribution f(x; §), where 8§ 1s
a single unknown parameter. Let x;, x,, ..., x, be the observed values in a random
sample of size n. Then the likelihood function of the sample 1s

L(B) = f(x1: 0) « f(x2: ) = =+ flx,: 0) (7-9)

Note that the likelihood function 1s now a function of only the unknown parameter 6.
The maximum likelihood estimator (MLE) of 0 1s the value of 0 that maximizes

the likelihood function L{8).

39



|7-4 Methods of Point Estimation

Example 7-9

Let X be a Bernoulli random variable. The probabilitv mass function 1s

P Pl =p) ™ x=0,1
Hxip) = 0 ' :

otherwise

where p 1s the parameter to be estimated. The likelihood function of a random sample of size
nis

w1 —x,

L[‘.r}] = ‘,I'J'T' (1 — ]l Tl — ‘g ] e ph (] — )
= H J,r:- (] —J;'J]| i :}.'J. ||] —Jr:-:]”_.-E':."

i=1

40



|7-4 Methods of Point Estimation

Example 7-9 (continued)

We observe thatfif p maximizes L( p), p also maximizes In L{ ;?}I Theretore,

i i

InL{p) = ( 2 .1‘,-)]]1 p+ (n — E _1',-) In(1 — p) y =In f(X)

i=1

dy _ 1'(x)
Now Y dx B f(X)

(=

. . . . - n .
Equating this to zero and solving for p vields p = (1/n) 2~ x;. Therefore, the maximum
likelihood estimator of p 1s

-

l F

17 2 Xi
i=|

p =



|7-4 Methods of Point Estimation

Example 7-12

Let X be normallv distributed with mean w and variance o=, where both w and o~ are
unknown. The likelithood function for a random sample of size n 1s

M 1

L, L'fz] = H

i=

(x,— pf

—llfcr"j |

||Mu

) — !

— A ':.
oV 2T (2o ]”fI -

and

In L{p. 0%) = ——]HI;ITLT ) ——= 2 (o, — )’
;_.U'_ [= |

y =(ax+b)"

\ g_y: ma(ax +b)™" 42
X




|7-4 Methods of Point Estimation

Example 7-12 (continued)
Now

d In L{ . U}:J [

[.i|\..|., l'_T_. =

d In L{ . U‘j:]

> =)

d{o”) 200 20t &

The solutions to the above equation yield the maximum likelihood estimators

Once again, the maximum likelihood estimators are equal to the moment estimators.
43



|7-4 Methods of Point Estimation

Properties of the Maximum Likelihood Estimator

Under verv general and not restrictive conditions, when the sample size » 1s large and
if ® 15 the maximum likelihood estimator of the parameter 8,
(1) ®isan approximatelv unbiased estimator for 6 [E[E]'} = 6],

(2) the variance of ® is nearly as small as the variance that could be obtained
with anv other estimator, and

(3)  ® has an approximate normal distribution.

44



7-4 Methods of Point Estimation

Properties of the Maximum Likelihood Estimator
MLE of o’ is

2

bias is negative. MLE for o&° tends to underestimate o
B9 The bias approaches zero as n increases.

MLE for o 1s an asymptotically unbiased estimator for o* .



|7-4 Methods of Point Estimation

The Invariance Property

Let &, ®,, .., ®; be the maximum likelihood estimators of the parameters 8,,

B, ..., B Then the maximum likelihood estimator of any function A(8,, §,, ..., B
of these parameters is the same function A(®, &, ..., 8.} of the estimators

8,0, ...06,

46



|7-4 Methods of Point Estimation

Example 7-13

. . . . . . . - 2 - r
In the normal distribution case, the maximum likelithood estimators of w and o~ were L = X

- R s ety . . . . . - . .
and 67 = >,-(X; — X )7/n. To obtain the maximum likelithood estimator of the function

h{p, 0°) = Vo = o, substitute the estimators p and ¢ into the function /i, which yields
_ | o 172
a=\Vao = - Z X=X

i=] J

Thus, the maximum likelithood estimator of the standard deviation & 1s not the sample
standard deviation S,

47



|7-4 Methods of Point Estimation

Complications 1n Using Maximum Likelihood Estimation

* [t 1s not always easy to maximize the likelihood
function because the equation(s) obtained from

dL(0)/d0 = 0 may be difficult to solve.

It may not always be possible to use calculus
methods directly to determine the maximum of L(0).

48
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