CH.6 Random Sampling and
Descriptive Statistics

Population vs Sample
Random sampling

Numerical summaries :
— sample mean, sample variance, sample range

Stem-and-Leaf Diagrams
— Median, quartiles, percentiles, mode, interquartile range (IQR)

Frequency distributions and histograms

Box plots
— Whisker, outlier

Time-sequence plots
Probability plots



Population

* The collection of things (parts, people,
services) -- called “members” -- under
study

e The letter N is usually defined to be the
number of members in the population



Examples of Populations

o Students in INE2002 (N ~ 100)
» Users of a software package (N ~ ?)

» Angioplasty procedures during 2009 at a
spesific hospital (N = 1523)

o A week’s (April 6 - 12, 2009) stampings of
part #2G76 at autobody plant (N = 4501)



Sample

* Measurement of only a subset of the
population . These will be used to say
something about the variables of the
entire population.

o The letter n (the “sample size”) Is
usually used to represent the number of
Items In In this subset




Examples of Samples

» Asking only 20 (out of 100) INE2002
students the current value of their GPA’s

e Surveying only some of a software package’s
users

« (Getting detailed angioplasty data only for
procedures done on Mondays

e Measuring one auto panel out of every 100
produced



Why Use Samples?

* In most situations, it Is impossible or impractical to observe
the entire population.

o [mpractical: it would be time consuming and expensive

* Impossible: some (perhaps many) of the members of the
population do not yet exist at the time a decision is to be
made,

o EXx: we could not test the tensile strength of all the chassis
structural elements

« So generally, we must view the population as conceptual.

« Therefore, we depend on a subset of observations from the
population to help make decisions about the population.




Population vs Sample

A

Sample II.r

x, sample average
g, sample standard
deviation

Histogram
;,.--""' er

Sample X, X, ,...,X

\
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Random Sampling

For statistical methods to be valid, the sample must be representative of the
population. It is often tempting to select the observations that are most
convenient as the sample.

Otherwise, the parameter of interest will be consistently underestimated (or
overestimated). Furthermore, the behavior of a judgment sample cannot be
statistically described.

To avoid these difficulties, it is desirable to select a random sample as the
result of some chance mechanism:

The selection of a sample Is a random experiment and each observation in
the sample is the observed value of a random variable.

The observations in the population determine the probability distribution of
the random variable.

To define a random sample, let X be a random variable that represents the
result of one selection of an observation from the population.




Random Sampling

The random variables X, X,,...,X_ are a random sample of size n if
(a) the Xi’s are independent random variables, and

(b) every X, has the same probability distribution.

Example:

e Suppose, we are investigating the effective service life of an
electronic component used in a cardiac pacemaker (kalp pili)
and that component life is normally distributed.

* Then we would expect each of the observations on component
life in a random sample of n components to be independent
random variables with exactly the same normal distribution.




6-1 Numerical Summaries
Describe data features numerically

Ex: characterize the central tendency in the data by arithmetic average which is
refered as sample mean

Other examples: sample variance, sample standard deviation, sample range

Definition: Sample Mean

It the n observations in a sample are denoted by x. x5, ..., x,,. the sample mean 1s

X;
X|+ X3+ "+ X, ;
n N

X = (6-1)




6-1 Numerical Summaries

Example 6-1

Let’s consider the eight observations collected from the prototvpe engine connectors from

Chapter 1. The eight observations are x; = 12.6,

Xy — ]Z.U.. Xy — 1.::!'4'.. Xq4 — ]2.3...1'5 — 13.{".

Xg = 13.5,x; = 12.6,and xg = 13.1. The sample mean 1s

X i 0 M i el

126 4+ 129 4 - + 1311

fl b

104

8

= 13.0 pounds

8

A phyvsical interpretation of the sample mean as a measure of location i1s shown in the dot

diagram of the pull-off force data. See Figure 6-1. Notice that the sample mean ¥ = 13.0 can be

thought of as a “balance point.” That 1s. if each observation represents | pound of mass placed

at the point on the x-axis, a fulerum located at X would exactly balance this svstem of weights.



6-1 Numerical Summaries

* &

. o L N
12 l 14 15
Full-off force

The sample mean as a balance point for a system of weights.



6-1 Numerical Summaries

Population Mean

For a finite population with N measurements, the
mean IS

L= ;1 f{x;)

The sample mean Is a reasonable estimate of the
population mean.

.M$

(B-2)



6-1 Numerical Summaries

Definition: Sample Variance

]f.JL'J,.JL'E, e

., X, 15 a sample of n observations, the sample variance i1s

8

2

7

fl

[-TJ' o ?}E
=]

n—1

(6-3)

The sample standard deviation, s, is the positive square root of the sample variance.




6-1 Numerical Summaries

How does the Sample Variance Measure Variability
through the deviations x,—-X 7
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6-1 Numerical Summaries

Example 6-2

Table 6-1 displays the quantities needed for calculating the sample variance and sample
standard deviation for the pull-off force data. These data are plotted in Fig. 6-2. The
numerator of s 1s

5

> (v — %) = 1.60

i=|

so the sample variance is

. 160 1.60
T8 —1 7

= ().2286 {pounds)’

and the sample standard deviation is

v = V0.2286 = 0.48 pounds



6-1 Numerical Summaries

Table 6-1 Calculation of Terms for the Sample Variance and Sample
Standard Deviation

: X X — X [ — _]E
l 12.6 —0.4 (.16
2 12.9 —(.1 0.01
3 13.4 (.4 (.16
4 12.3 —0.7 (.49
3 13.6 (.6 0.36
6 13.5 (1.5 (.25
7 12.6 —.4 (.16
8 13.1 (0.1 (.01

1040 0.0 160




6-1 Numerical Summaries

Computation of s2

n

Zn:(xi -X)? (X + X - 2% ) Zn:xiz +nX? —ZYZn: X,
i=1 i—1 i—1

2 i=1

g2 — _ _
n-1 n-1 n-1
n n
D xZ4+nX?-2xnX ) X +nX’ —2nX’
— 1=l — =L f Remember )
n-1 n-1 ( )Zn
1X=(1n)> = x
/ n ﬁ \ i=1 | J
n n 1
inz _nx?2 Xi2 _\i=1




6-1 Numerical Summaries

Population Variance

When the population is finite and consists of N values,
we may define the population variance as

N LT

; (v, — ) (6-5)
N

The sample variance Is a reasonable estimate of the

population variance.

'



6-1 Numerical Summaries

Definition

It the » observations n a sample are denoted by x, x5, ..., x,, the sample range 1s

r = max(x;) — min(x;) (6-6)




6-2 Stem-and-Leaf Diagrams

A stem-and-leal diagram i1s a good way to obtain an informative visual display of a data
set Xy, X7, ..., X,, where each number x; consists of at least two digits. To construct a stem-
and-leaf diagram, use the following steps.

Steps for Constructing a Stem-and-Leaf Diagram

(1}  Divide each number x, into two parts: a stem, consisting of one or more of the
leading digits and a leaf, consisting of the remaining digit.

(2) List the stem values in a vertical column.
(3) Record the leaf for each observation beside its stem.

(4)  Write the units for stems and leaves on the display.




6-2 Stem-and-Leaf Diagrams

Table 6-2 Compressive Strength (in psi) of 80 Aluminum-Lithium Alloy Specimens

221 183
154 153
(245) max 22 174
131 154
| Bi) | G0
|78 @ min
157 101
151 142
175 149
201 200

| =6
174
|GG
|15
[G3
|67
1 71
|63

R
| 76

121
120
| =1
| (2
|44
| 84
|65
145
| (20
| 50)

|81
| 68
5%
208
33
135
172

71

117

el

170

| 8
167
| 76
| 58
| 56
229
| 5%
148
| 50
I8

143
141
1 10

o B
2

123
| 4y
| 6Y
|58
|35

|49

psi: pounds per square inch



6-2 Stem-and-Leaf Diagrams

From the diagram

Most of the data lie
between 110 and 200 psi

A central value is
somewhere between 150
and 160 psi

The data are distributed
approximately
symmetrically about the
central value

Stem Leaf Frequency
7 b I
A 7 I
4 7 I
10 51 2
11 580 3
12 103 3
13 413535 f
14 29583169 8
15 471340886808 12
16 3073050870 10
|7 B544162106 10)
158 0361410 7
19 O/R0934 i

20 T108 |

21 ) I

22 180 3

23 7 J

24 5 I

Stem : Tens and hundreds digits (psi). Leaf: Ones digits (psi)



6-2 Stem-and-Leaf Diagrams
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yields from a chemical
process
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Leaf: Ones digits.
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6-2 Stem-and-Leaf Diagrams - ordered

Character Stem-and-Leaf Display
Stem-and-leat of Strength
M =80  Leal Unit= 1.0

I 7 &
Easier to find 2 8 7
. 3 () 7
» percentiles 5 1o s
 quartiles 8 B 05 8
« median | ] 12 01 3
| 7 3 | 33455
25 |4 | 2356809009
37 | 5 D013446T8R888
Ry | & ODO0O03I357T7TRO
3 | 7 D1 124436068
23 | & DOl 1346
| i | 9 (3 00
| () 200 (] 78
6 21 "
3 22 | & O
24 5




6-2 Stem-and-Leaf Diagrams

Data Features : median, range, quartiles

The median, X, isa measure of central tendency that divides the data
Into two equal parts, half below the median and half above. If the
number of observations is even, the median is halfway between the two
central values.

In the 80 compressive strength data, the 40th and 41st values of strength
are 160 and 163. So the median is (160 + 163)/2 = 161.5. If the number
of observations is odd, the median is the central value.

The range Is a measure of variability that can be easily computed from
the ordered stem-and-leaf display. It is the maximum minus the
minimum measurement. From the figure, the range is 245 - 76 = 169.



6-2 Stem-and-Leaf Diagrams

Data Features : median, range, quartiles, interquartile range, mode

When an set of data iIs divided into four equal parts, the
division points are called quartiles.

The first or lower quartile, g, , is a value that has approximately one-
fourth (25%) of the observations below it and approximately 75% of the
observations above.

The second quartile, g,, has approximately one-half (50%) of the
observations below its value. The second quartile is exactly equal to the
median.

The third or upper quartile, g,, has approximately three-fourths (75%)
of the observations below its value. As in the case of the median, the
quartiles may not be unique.



6-2 Stem-and-Leaf Diagrams

Data Features : median, range, quartiles, interquartile range, mode

 The compressive strength data contains n = 80 observations. The
first and third quartiles (q, and q,) are calculated as the

(n +1)/4 and 3(n + 1)/4 ordered observations and interpolated as
needed.

 Forexample, (80 + 1)/4 = 20.25 and 3(80 + 1)/4 = 60.75.

e (, Isinterpolated between the 20th and 21st ordered observation
d, = [(145-143)/(21-20)]*(20.25-20)+143 = 143.50

e (3 lis interpolated between the 60th and 61st ordered observation
0; = [(181-181)/(61-60)]*(60.75-60)+181 = 181.00



6-2 Stem-and-Leaf Diagrams

Data Features : median, range, quartiles, interquartile range, mode

e The interquartile range is the difference between the upper and
lower quartiles, and it is sometimes used as a measure of variability.
IQR=q; — q,= 181-143.5=375

e In general, the 100kth percentile is a data value such that
approximately 100k% of the observations are at or below this value and
approximately 100(1 - k)% of them are above it.

*The sample mode is the most frequently occuring data value.
Mode is 158 in the compressive strength data.



Stem-and-Leaf Exercise 6.15 (6.23)

70 data: Numbers of cycles to failure of aluminum test coupons subjected to repeated
alternating stress at 21000 psi, 18 cycles per second

1115

1310

1540

1502

1258

1315

1085

1020

865

2130

1421

1109

1481

1567

1883

1203

1270

1015

845

1674
1016
1102
1605

2215

885

1223

€D

2265

1910

1018

1452

1890

2100

1594

2023

1315

1269

1260

1888

1782

1522

1792

1000

1820

1940

1120

910

1730

1102

1578

1416

1560

1055

1764

1330

1608

1535

1781

1750

1501

1238

990

1468

1512

1750

1642



Stem-and-Leaf

* Median = 1436.5
Q1 =1097.8
*Q3=1735.0

Exercise 6.15 (6.23)

unit = 100 1]2 represents 1200

=

0

oo = 2

[ T e T IS T

0T |3
OF |

0S|7777

0088899
1*]000000011111

1T |22222223333
1F|444445555555555
15166667777777

lo| 888899



Stem-and-Leaf Exercise 6.16 (6.24)

64 data: The percentage of cotton in material used to manufacture men’s shirts
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Stem-and-Leaf

* Median = 34.7
Q1 =338
Q3 =35.575

Exercise 6.16 (6.24)

Leaf Unit = 0.10 32|1 represents 32.1%

1
6
9
17
24
(12)
26
17
12

Ix.;"j'

L N

3211
32156789
331114
33]56666688
34|0111223
34|55666607777779
351001112344
35|56789
36234
366888
37113

371689



6-3 Frequency Distributions and Histograms

« Afrequency distribution is a more compact summary of data
than a stem-and-leaf diagram.

 To construct a frequency distribution, we must divide the range of
the data into intervals, which are usually called class intervals,
cells, or bins.

In practice # bin= Jn  where nis the sample size

Constructing a Histogram (Equal Bin Widths):

(1) Label the bin (class interval) boundaries on a horizontal scale.

(2) Mark and label the wvertical scale with the frequencies or the relative
frequencies.

(3) Above each bin, draw a rectangle where height 15 equal to the frequency
(or relative frequency) corresponding to that bin.



6-3 Frequency Distributions and Histograms

Table 6-4  Frequency Distribution for the Compressive Strength Data in Table 6-2

Class 0=x<9 0=x<Il0 10=x<130 B0=x<I30 10=x<17 170=x<190 190=x<210 210=x<230 230=x<250

Frequency 2 3 6 14 2 17 10 4 2
Relative

frequency  0.0250 0.0375 0.0750 0.1730 0.2730 0.2125 0.1250 0.0300 0.0250
Cumulative

relative

frequency  0.0250 0.0625 0.1375 0.3125 0.5875 0.8000 0.9230 09750 1.0000

Frequency Distribution of compressive strength for 80 aluminum-lithium alloy specimens.



6-3 Frequency Distributions and Histograms

0.3125 25
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Histogram of compressive strength for 80 aluminum-lithium alloy specimens.



6-3 Frequency Distributions and Histograms
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A histogram of the compressive strength data from Minitab with 17 bins.



6-3 Frequency Distributions and Histograms

20

Fraquency
=
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strangth

Figure 6-9 A histogram of the compressive strength
data from Minitab with nine bins.

A histogram of the compressive strength data from Minitab with nine bins.



6-3 Frequency Distributions and Histograms
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A cumulative distribution plot of the compressive strength data from Minitab.



6-3 Frequency Distributions and Histograms

x X x ¥ x
X
Magative or laft skaw sSymmetric FPositive or right skew
'l =) el

Histograms for symmetric and skewed distributions.



6-3 Frequency Distributions and Histograms

250

Number of airplanes
manufactured in 1985
— —

o Q1

S S

a1
(]

Figure 6-12

Airplane production in

1985. (Source: Boeing 737 757 747 767 707
Company.) Airplane model

Histograms for categorical data

Pareto charts can also be used



Exercise 6.32 (6.40)

64 data: The percentage of cotton in material used to manufacture men’s shirts
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Freqguency Distributions Exercise 6.32 (6.40)

Frequency Tabulation for Exercise 6-lc.Cotton content
Lowar Upper Eelative Cumulative Cum. Rel.
Class Limit Limit HMidpoint Fracquency Fregquency Fregusnoy Freguency

at or below 31.0 0 -00o0 Q Qoaq
1 31.0 32.0 31.5 0 L Qa0 Q a0od
2 32.0 33.0 32.5 = .083s o 2338
3 33.0 340 33.5 11 L1715 17 LZERE
4 2.0 35.0 34 .5 21 -3281 38 .5938
5 a5.o 3.0 5.5 1a -2188 52 .8125
& 3e.0 37.0 3e.5 7 1054 =5 .B21%
7 37.0 3B.0 37.5 5 L0781 od L.00040
5 3B.0 35.0 35.5 0 -00o0 0d 10000
abonre 35.0 0 L0000 o4 Qoo



Histogram for Exercise 6.32 (6.40)

Frequency
|
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6-4 Box Plots

* The box plot is a graphical display that simultaneously
describes several important features of a data set, such as
center, spread, departure from symmetry, and identification of
observations that lie unusually far from the bulk of the data
(outliers).

 Whisker
e Qutlier
e Extreme outlier



6-4 Box Plots

Whisker extends to Whisker extands to
zmallest data point within largast data point within
1.5 interquartile ranges from 1.5 intarquartile ranges
first quartila from third quartile

First quartile  Sacond quartile Third quartile

“‘x —— -
o i | o T o
NS v /
Cutliars Cutliars Extrame outliar

-— 1.5 IGR a | 1.51IGR 3 | IGR —=|=—1.5 IQR > |- 1.5 IR ———|

Outlier : a point beyond whisker but less than 3 IQR from the box edge

Extreme outlier: a point more than 3 IQR from the box edge



6-4 Box Plots

l 250
237.25 T
* 245
1.5 IGR 237
l 200 ‘
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87.05 97

a7
* 76

Box plot for compressive strength data



6-4 Box Plots

Box plots are useful for
graphical comparisons
among data sets.

Comparative box plots
of a quality index at
three plants.

120

110

100

Quality indeax

90

S0

70




6-5 Time Sequence Plots

o A time series or time sequence is a data set in which the
observations are recorded in the order in which they occur.

« A time series plot is a graph in which the vertical axis
denotes the observed value of the variable (say x) and the
horizontal axis denotes the time (which could be minutes, days,
years, etc.).

* \WWhen measurements are plotted as a time series, we
often see

trends,

scycles, or

sother broad features of the data



Sales, x

6-5 Time Sequence Plots

Sales, x

1 2 3 4 1 2 3 4

198219683 1954 1985 1986 1987 1988 1982 1990 1991 Yaars
1289 1290
(b}

fial

Company sales by year (a) and by quarter (b).

|

2 3
1291

4 Quartars



6-5 Time Sequence Plots

Laaf Stam Tima series plot
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A digidot (stem-and-leaf + time series) plot of the compressive strength data



6-5 Time Sequence Plots

Laaf Stam Tima saries plot
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A digidot plot of chemical process concentration readings, observed hourly.

After 20 hours, lower concentrations begin to occur.



6-6 Probability Plots

e Probability plotting is a graphical method for determining
whether sample data conform to a hypothesized distribution
based on a subjective visual examination of the data.

* Probability plotting typically uses special graph paper, known
as probability paper, that has been designed for the
hypothesized distribution. Probability paper is widely available
for the normal, lognormal, Weibull, and various chi-square and
gamma distributions.



6-6 Probability Plots
Example 6-7

Ten observations on the effective service life in minutes of batteries used in a portable
personal computer are as follows: 176, 191, 214, 220, 205, 192, 201, 190, 183, 185, We
hypothesize that battery life 1s adequately modeled by a normal distribution. To use probabil-
ity plotting to investigate this hypothesis, first arrange the observations in ascending order and
calculate their cumulative frequencies (j — 0.5)/10 as shown in Table 6-6.

Table 6-6  Calculation for Constructing a Normal

Probability Plot
J X 1) (j — 0.5)/10 z;
| 176 0.05 —1.64
2 183 (.15 —1.04
3 185 (0.25 —0.67
4 190 (.35 —(.39
5 191 (.45 —{.13
o 192 (0.55 0.13
7 201 (.65 0.39
8 2035 (.75 0.67
9 214 (.85 1.04
10 220 (.95 1.64




6-6 Probability Plots

Example 6-7 (continued)

« A straight line, chosen subjectively, is drawn through the
plotted points.

 In drawing the straight line, you should be influenced more
by the points near the middle of the plot than by the
extreme points.

e A good rule of thumb is to draw the line approximately
between the 25th and 75th percentile points.

 Imagine a fat pencil lying along the line. If all the points
are covered by this imaginary pencil, a normal distribution
adequately describes the data.



6-6 Probability Plots

Normal probability plot
for battery life

obtained from
cumulative frequencies

The points pass the

“fat pencil” test,

So, the normal distribution
IS an appropriate model.

100 j— 0.5¥n
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100[1 —( j - 0.5)n]



6-6 Probability Plots

3.20

Normal probability plot
obtained from
standardized normal

SCOres.

-3.20
1710 180 120 200 2110 220




6-6 Probability Plots
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Normal probability plots indicating a nonnormal distribution.
(a) Light-tailed distribution. (b) Heavy-tailed distribution. (c )
A distribution with positive (or right) skew.



6-6 Excercise 6-71 (6.79)

70 data: Numbers of cycles to failure of aluminum test coupons subjected to repeated
alternating stress at 21000 psi, 18 cycles per second

1115 2130 1674 2265 1260 1730 1535
1310 1421 1016 1910 1888 1102 1781
1540 1109 1102 1018 1782 1578 1750
1502 1481 1605 1452 1522 758 1501
1258 1567 706 1890 1792 1416 1238
1315 1883 2215 2100 1000 1560 990
1085 1203 785 1594 1820 1055 1468
798 1270 885 2023 1940 1764 1512
1020 1015 1223 1315 1120 1330 1750

865 845 375 1269 910 1608 1642



6-6 Excercise 6-71 (6.79)

Mormal Probability Plot for cycles to failure
Data from exercise 6-15

The data appears to be

normally distributed
although there are some g
departures at the ends
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6-6 Excercise 6-27 (6.35)

40 data: Wine gradings on a 0-100 point scale
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6-6 Excercise 6-27 (6.35)

Sample mean:
M 40
X. X.

_ Z ! Zl ' 3578

X = = = = 89 .45
71 40 40

Sample variance:

40 20
Sy, =3578 Q¥ =320366
i=1 i=1
{ m \ 2
= 2 ‘éti J {3'?'-'8}2
SE:;M - :320366— Y
n-1 40 -1 39
=8.05

Sample modes: 90, 91

Leaf unit: 0.1
1|2 represents 1.2
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6-6 Excercise 6-27 (6.35)

Sample quartiles: |eaf unit: 0.1

N+l 40+1 1|2 represents 1.2
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L 4
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Frequency

6-6 Excercise 6-27 (6.35)
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6-6 Excercise 6-50 (6.58 — data of 6.22)

Q,=88.6

Q2:90-4 Boxplot of Fuel
Q5=92.2 100+ *

IQR=3.6
1.5*IQR=5.4 2

Whiskers
83.4
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