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Separable First-Order Equations

As we will see below, the notion of a differential equation being “separable” is a natural general-

ization of the notion of a first-order differential equation being directly integrable. What’s more,

a fairly natural modification of the method for solving directly integrable first-order equations

gives us the basic approach to solving “separable” differential equations. However, it cannot

be said that the theory of separable equations is just a trivial extension of the theory of directly

integrable equations. Certain issues can arise that do not arise in solving directly integrable equa-

tions. Some of these issues are pertinent to even more general classes of first-order differential

equations than those that are just separable, and may play a role later on in this text.

In this chapter we will, of course, learn how to identify and solve separable first-order

differential equations. We will also see what sort of issues can arise, examine those issues, and

discuss some ways to deal with them. Since many of these issues involve graphing, we will also

draw a bunch of pictures.

4.1 Basic Notions
Separability

A first-order differential equation is said to be separable if, after solving it for the derivative,

dy

dx
= F(x, y) ,

the right-hand side can then be factored as “a formula of just x ” times “a formula of just y ”,

F(x, y) = f (x)g(y) .

If this factoring is not possible, the equation is not separable.

More concisely, a first-order differential equation is separable if and only if it can be written

as
dy

dx
= f (x)g(y) (4.1)

where f and g are known functions.

!◮Example 4.1: Consider the differential equation

dy

dx
− x2 y2 = x2 . (4.2)
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Solving for the derivative (by adding x2 y2 to both sides),

dy

dx
= x2 + x2 y2 ,

and then factoring out the x2 on the right-hand side gives

dy

dx
= x2

(

1 + y2
)

,

which is in form
dy

dx
= f (x)g(y)

with

f (x) = x2

︸︷︷︸

no y’s

and g(y) =
(

1 + y2
)

︸ ︷︷ ︸

no x’s

.

So equation (4.2) is a separable differential equation.

!◮Example 4.2: On the other hand, consider

dy

dx
− x2 y2 = 4 . (4.3)

Solving for the derivative here yields

dy

dx
= x2 y2 + 4 .

The right-hand side of this clearly cannot be factored into a function of just x times a function

of just y . Thus, equation (4.3) is not separable.

We should (briefly) note that any directly integrable first-order differential equation

dy

dx
= f (x)

can be viewed as also being the separable equation

dy

dx
= f (x)g(y)

with g(y) being the constant 1 . Likewise, a first-order autonomous differential equation

dy

dx
= g(y)

can also be viewed as being separable, this time with f (x) being 1 . Thus, both directly

integrable and autonomous differential equations are all special cases of separable differential

equations.
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Integrating Separable Equations

Observe that a directly-integrable equation

dy

dx
= f (x)

can be viewed as the separable equation

dy

dx
= f (x)g(y) with g(y) = 1 .

We note this because the method used to solve directly-integrable equations (integrating both

sides with respect to x ) is rather easily adapted to solving separable equations. Let us try to

figure out this adaptation using the differential equation from the first example. Then, if we are

successful, we can discuss its use more generally.

!◮Example 4.3: Consider the differential equation

dy

dx
− x2 y2 = x2 .

In example 4.1 we saw that this is a separable equation, and can be written as

dy

dx
= x2

(

1 + y2
)

.

If we simply try to integrate both sides with respect to x , the right-hand side would become
∫

x2
(

1 + y2
)

dx ,

Unfortunately, the y here is really y(x) , some unknown formula of x ; so the above is just

the integral of some unknown function of x — something we cannot effectively evaluate. To

eliminate the y’s on the right-hand side, we could, before attempting the integration, divide

through by 1 + y2 , obtaining
1

1 + y2

dy

dx
= x2 . (4.4)

The right-hand side can now be integrated with respect to x . What about the left-hand side?

The integral of that with respect to x is
∫

1

1 + y2

dy

dx
dx .

Tempting as it is to simply “cancel out the dx’s ”, let’s not (at least, not yet). After all, dy/dx

is not a fraction; it denotes the derivative y′(x) where y(x) is some unknown formula of

x . But y is also shorthand for that same unknown formula y(x) . So this integral is more

precisely written as
∫

1

1 + [y(x)]2
y′(x) dx .

Fortunately, this is just the right form for applying the generic substitution y = y(x) to

convert the integral with respect to x to an integral with respect to y . No matter what y(x)

might be (so long as it is differentiable), we know
∫

1

1 + [y(x)]2

︸ ︷︷ ︸

1

1 + y2

y′(x) dx
︸ ︷︷ ︸

dy

=
∫

1

1 + y2
dy .
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Combining all this, we get

∫
1

1 + y2

dy

dx
dx =

∫
1

1 + [y(x)]2
y′(x) dx =

∫
1

1 + y2
dy ,

which, after cutting out the middle, reduces to

∫
1

1 + y2

dy

dx
dx =

∫
1

1 + y2
dy ,

the very equation we would have obtained if we had yielded to temptation and naively “can-

celled out the dx’s ”.

Consequently, the equation obtained by integrating both sides of equation (4.4) with

respect to x ,
∫

1

1 + y2

dy

dx
dx =

∫

x2 dx ,

is the same as ∫
1

1 + y2
dy =

∫

x2 dx .

Doing the indicated integration on both sides then yields

arctan(y) = 1

3
x3 + c ,

which, in turn, tells us that

y = tan
(

1

3
x3 + c

)

.

This is the general solution to our differential equation.

Two generally useful ideas were illustrated in the last example. One is that, whenever we

have an integral of the form
∫

H(y)
dy

dx
dx

where y denotes some (differentiable) function of x , then this integral is more properly written

as ∫

H(y(x)) y′(x) dx ,

which reduces to ∫

H(y) dy

via the substitution y = y(x) (even though we don’t yet know what y(x) is). Thus, in general,

∫

H(y)
dy

dx
dx =

∫

H(y) dy , (4.5)

This equation is true whether you derive it rigorously, as we have, or obtain it naively by me-

chanically canceling out the dx’s.1

The other idea seen in the example was that, if we divide an equation of the form

dy

dx
= f (x)g(y)

1 One of the reasons our notation is so useful is that naive manipulations of the differentials often do lead to valid

equations. Just don’t be too naive and cancel out the d’s in dy/dx .
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by g(y) , then (with the help of equation (4.5)) we can compute the integral with respect to x

of each side of the resulting equation,

1

g(y)

dy

dx
= f (x) .

This leads us to a basic procedure for solving separable first-order differential equations :

1. Get the differential equation into the form

dy

dx
= f (x)g(y) .

2. Divide through by g(y) to get

1

g(y)

dy

dx
= f (x) .

(Note: At this point we’ve “separated the variables”, getting all the y’s and its derivatives

on one side, and all the x’s on the other.)

3. Integrate both sides with respect to x , making use of the fact that
∫

1

g(y)

dy

dx
dx =

∫
1

g(y)
dy .

4. Solve the resulting equation for y .

There are a few issues that can arise in some of these steps, and we will have to slightly refine

this procedure to address those issues. Before doing that, though, let us practice with another

differential equation for which the above approach can be applied without any difficulty.

!◮Example 4.4: Consider solving the initial-value problem

dy

dx
= − x

y − 3
with y(0) = 1 .

Here,
dy

dx
= f (x)g(y) with f (x) = −x and g(y) = 1

y − 3
,

and “dividing through by g(y) ” is the same as multiplying through by y − 3 . Doing so, and

then integrating both sides with respect to x , we get the following:

[y − 3]dy

dx
= −x

→֒
∫

[y − 3]dy

dx
dx = −

∫

x dx

→֒
∫

[y − 3] dy = −
∫

x dx

→֒ 1

2
y2 − 3y = −1

2
x2 + c .

Though hardly necessary, we can multiply through by 2 , obtaining the slightly simpler ex-

pression

y2 − 6y = −x2 + 2c .



78 Separable First-Order Equations

We are now faced with the less-than-trivial task of solving the last equation for y in terms of

x . Since the left-hand side looks something like a quadratic for y , let us rewrite this equation

as

y2 − 6y +
[

x2 − 2c
]

= 0

so that we can apply the quadratic formula to solve for y . Applying that venerable formula,

we get

y =
−(−6) ±

√

(−6)2 − 4
[

x2 − 2c
]

2
= 3 ±

√

9 − x2 + 2c ,

which, since 9 + 2c is just another unknown constant, can written a little more simply as

y = 3 ±
√

a − x2 . (4.6)

This is the general solution to our differential equation.

Now for the initial-value problem: Combining the general solution just derived with the

given initial value at x = 0 yields

1 = y(0) = 3 ±
√

a − 02 = 3 ±
√

a .

So

±
√

a = −2 .

This means that a = 4 , and that we must use the negative root in formula (4.6) for y . Thus,

the solution to our initial-value problem is

y = 3 −
√

4 − x2 .

4.2 Constant Solutions
Avoiding Division by Zero

In the above procedure for solving

dy

dx
= f (x)g(y) ,

we divided both sides by g(y) . This requires, of course, that g(y) not be zero — which is often

not the case.

!◮Example 4.5: Consider solving

dy

dx
= 2x(y − 5) .

As long as y 6= 5 , we can divide through by y − 5 and follow our basic procedure:

1

y − 5

dy

dx
= 2x

→֒
∫

1

y − 5

dy

dx
dx =

∫

2x dx
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→֒
∫

1

y − 5
dy =

∫

2x dx

→֒ ln |y − 5| = x2 + c

→֒ |y − 5| = ex2+c = ex2

ec

→֒ y − 5 = ±ex2

ec .

So, assuming y 6= 5 , we get

y = 5 ± ecex2

.

Notice that, because ec 6= 0 for every real value c , this formula for y never gives us y = 5

for any real choice of c and x .

But what about the case where y = 5 ?

Well, suppose y = 5 . To be more specific, let y be the constant function

y(x) = 5 for every x ,

and plug this constant function into our differential equation

dy

dx
= 2x(y − 5) .

Recalling (again) that derivatives of constants are zero, we get

0 = 2x(5 − 5) ,

which is certainly a true equation. So y = 5 is a solution. In fact, it is one of those “constant”

solutions we discussed in the previous chapter.

Combining all the above, we see that the “general solution” to the given differential

equation is actually the set consisting of the solutions

y(x) = 5 and y(x) = 5 ± ecex2

.

Now consider the general case, where we seek all possible solutions to

dy

dx
= f (x)g(y) .

If y0 is any single value for which

g(y0) = 0 ,

then plugging the corresponding constant function

y(x) = y0 for all x

into the differential equation gives, after a trivial bit of computation,

0 = 0 ,

showing that

y(x) = y0 is a constant solution to
dy

dx
= f (x)g(y) ,
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just as we saw (in the above example) that

y(x) = 5 is a constant solution to
dy

dx
= 2x(y − 5) .

Conversely, suppose y = y0 is a constant solution to

dy

dx
= f (x)g(y)

(and f is not the zero function). Then the equation is valid with y replaced by the constant y0 ,

giving us

0 = f (x)g(y0) ,

which, in turn, means that y0 must be a constant such that

g(y0) = 0 .

What all this shows is that our basic method for solving separable equations may miss the

constant solutions because those solutions correspond to a division by zero in our basic method.2

Because constant solutions are often important in understanding the physical process the

differential equation might be modeling, let us be careful to not miss them. Accordingly, we will

insert the following step into our procedure on page 77 for solving separable equations:

• Identify all constant solutions by finding all values y0 , y1 , y2 , … such that

g(yk) = 0 ,

and then write down

y(x) = y0 , y(x) = y1 , y(x) = y2 , . . . .

(These are the constant solutions.)

(And we will renumber the other steps as appropriate.)

Sometimes, the formula obtained by our basic procedure for solving can be ‘tweaked’ to

also account for the constant solutions. A standard ‘tweak’ can be seen by reconsidering the

general solution obtained in our last example.

!◮Example 4.6: The general solution obtained in the previous example was the set containing

y(x) = 5 and y(x) = 5 ± ecex2

,

If we let A = ±ec , the second equation reduces to

y(x) = 5 + Aex2

.

Remember, though, A = ±ec can be any positive or negative number, but cannot be zero

(because of the nature of the exponential function). So, by our definition of A , our general

solution is

y(x) = 5 (4.7a)

2 Because g(y0) = 0 is a ‘singular’ value for division, many authors refer to constant solutions of separable

equations as singular solutions.
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and

y(x) = 5 + Aex2

where A can be any nonzero real number. (4.7b)

However, if we allow A to be zero, then equation (4.7b) reduces to equation (4.7a),

y(x) = 5 + 0 · ex2 = 5 ,

which means the entire set of possible solutions can be expressed more simply as

y(x) = 5 + Aex2

where A is an arbitrary constant with no restrictions on its possible values.

In the future, we will usually express our general solutions as simply as practical, with the

trick of letting

A = ±ec or 0

often being used without comment. Keep in mind, though, that the sort of tweaking just described

is not always possible.

?◮Exercise 4.1: Verify that the general solution to

dy

dx
= −y2

is given by the set consisting of

y(x) = 0 and y(x) = 1

x + c
.

Is there anyway to rewrite these two formula for y(x) as a single formula using just one

arbitrary constant?

The Importance of Constant Solutions

Even if we can use the same general formula to describe all the solutions (constant and otherwise),

it is often worthwhile to explicitly identify any constant solutions. To see this, let us now solve

the differential equation from chapter 1 describing a falling object when we take into account air

resistance.

!◮Example 4.7: Let v = v(t) be the velocity (in meters per second) at time t of some object

of mass m plummeting towards the ground. In chapter 1, we decided that Fair , the force of

air resistance acting on the falling body, could be described by

Fair = −γ v

where γ was some positive constant dependent on the size and shape of the object (and

probably determined by experiment). Using this, we obtained the differential equation

dv

dt
= −9.8 − κv where κ = γ

m
.
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This is a relatively simple separable equation. Assuming v equals a constant v0 yields

0 = −9.8 − κv0 H⇒ v0 = −9.8

κ
= −9.8m

γ
.

So, we have one constant solution,

v(t) = v0 for all t

where

v0 = −9.8

κ
= −9.8m

γ
.

For reasons that will soon become clear, v0 is called the terminal velocity of the object that

is falling.

To find the other possible solutions, we assume v 6= v0 and proceed:

dv

dt
= −9.8 − κv

→֒ 1

9.8 + κv

dv

dt
= −1

→֒
∫

1

9.8 + κv

dv

dt
dt = −

∫

1 dt

→֒
∫

1

9.8 + κv
dv = −

∫

dt

→֒ 1

κ
ln |9.8 + κv| = −t + c

→֒ ln |9.8 + κv| = −κt + κc

→֒ 9.8 + κv = ±e−κt+κc

→֒ v(t) = 1

κ

[

−9.8 ± eκce−κt
]

.

Since v0 = −9.8κ−1 , the last equation reduces to

v(t) = v0 + Ae−κt where A = ± 1

κ
eκc .

This formula for v(t) yields the constant solution, v = v0 , if we allow A = 0 . Thus, letting

A be a completely arbitrary constant, we have that

v(t) = v0 + Ae−κt (4.8a)

where

v0 = −9.8m

γ
and κ = γ

m
(4.8b)

describes all possible solutions to the differential equation of interest here. The graphs of

some possible solutions (assuming a terminal velocity of -10 meters/second) are sketched in

figure 4.1.
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Figure 4.1: Graphs of the velocity of a falling object during the first 8 seconds of its fall

assuming a terminal velocity of −10 meters per second. Each graph

corresponds to a different initial velocity.

Notice how the constant in the constant solution, v0 , appears in the general solution

(equation (4.8a)). More importantly, notice that the exponential term in this solution rapidly

goes to zero as t increases, so

v(t) = v0 + Ae−κt → v(t) = v0 as t → ∞ .

This is graphically obvious in figure 4.1. Consequently, no matter what the initial velocity

and initial height were, eventually the velocity of this falling object will be very close to v0

(provided it doesn’t hit the ground first). That is why v0 is called the terminal velocity. That

is also why that constant solution is so important here (and is appropriately also called the

equilibrium solution). It accurately predicts the final velocity of any object falling from a

sufficiently high height. And if you are that falling object, then that velocity3 is probably a

major concern.

4.3 Explicit Versus Implicit Solutions

Thus far, we have been able to find explicit formulas for all of our solutions; that is, we have been

able to carry out the last step in our basic procedure — that of solving the resulting (integrated)

equation for y in terms of x — obtaining

y = y(x) where y(x) is some formula of x (with no y’s ).

For example, as the general solution to

dy

dx
− x2 y2 = x2 ,

3 between 120 and 150 miles per hour for a typical human body
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we obtained (in example 4.3)

y = tan
(

1

3
x3 + c

)

︸ ︷︷ ︸

y(x)

.

Unfortunately, this is not always possible.

!◮Example 4.8: Consider
dy

dx
= x + 1

8 + 2π sin(πy)
.

In this case,

g(y) = 1

8 + 2π sin(πy)
,

which can never be zero. So there are no constant solutions, and we can blithely proceed with

our procedure. Doing so:

dy

dx
= x + 1

8 + 2π sin(πy)

→֒ [8 + 2π sin(πy)]dy

dx
= x + 1

→֒
∫

[8 + 2π sin(πy)]dy

dx
dx =

∫

x + 1 dx

→֒
∫

[8 + 2π sin(πy)] dy =
∫

x + 1 dx

→֒ 8y − 2 cos(πy) = 1

2
x2 + x + c .

The next step would be to solve the last equation for y in terms of x . But look at that last

equation. Can you solve it for y as a formula of x ? Neither can anyone else. So we are

not able to obtain an explicit formula for y . At best, we can say that y = y(x) satisfies the

equation

8y − 2 cos(πy) = 1

2
x2 + x + c .

Still, this equation is not without value. It does implicitly describe the possible relations

between x and y . In particular, the graphs of this equation can be sketched for different

values of c (we’ll do this later on in this chapter). These graphs, in turn, give you the graphs

you would obtain for y(x) if you could actually find the formula for y(x) .

In practice, we must deal with both “explicit” and “implicit” solutions to differential equa-

tions. When we have an explicit formula for the solution in terms of the variable, that is, we have

something of the form

y = y(x) where y(x) is some formula of x (with no y’s ) , (4.9)

then we say that we have an explicit solution to our differential equation. Technically, it is that

“formula of x ” in equation (4.9) which is the explicit solution. In practice, though, it is common

to refer to the entire equation as “an explicit solution”. For example, we found that the solution

to
dy

dx
− x2 y2 = x2
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is explicitly given by

y = tan
(

1

3
x3 + c

)

.

Strictly speaking, the explicit solution here is the formula

tan
(

1

3
x3 + c

)

.

That, of course, is what is really meant when someone answers the question

What is the explicit solution to
dy

dx
− x2 y2 = x2 ?

with the equation

y = tan
(

1

3
x3 + c

)

.

If, on the other hand, we have an equation (other than something like (4.9)) involving the

solution and the variable, then that equation is called an implicit solution. In trying to solve the

differential equation in example 4.8,

dy

dx
= x + 1

8 + 2π sin(πy)
,

we derived the equation

8y − 2 cos(πy) = 1

2
x2 + x + c .

This equation is an implicit solution for the given differential equation.4

Differential equations — be they separable or not — can have both implicit and explicit

solutions. Indeed, implicit solutions often arise in the process of deriving an explicit solution.

For example, in solving
dy

dx
− x2 y2 = x2 ,

we first obtained

arctan(y) = 1

3
x3 + c .

This is an implicit solution. Fortunately, it could be easily solved for y , giving us the explicit

solution

y = tan
(

1

3
x3 + c

)

.

As a general rule, explicit solutions are preferred over implicit solutions. Explicit solutions

usually give more information about the solutions, and are easier to use than implicit solutions

(even when you have sophisticated computer math packages). So, whenever you solve a differ-

ential equation,

FIND AN EXPLICIT SOLUTION IF AT ALL PRACTICAL.

Do not be surprised, however, if you encounter a differential equation for which an explicit

solution is not obtainable. This is not a disaster, it just means a little more work may be needed

to extract useful information about the possible solutions.

4 The fact that an explicit solution is a formula while an implicit solution is an equation may be a little confusing at

first. If it helps, think of the phrase “implicit solution” as being shorthand for “an equation implicitly defining the

solution y = y(x) ”.
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4.4 The Full Procedure for Solving Separable
Equations

In light of the possibility of singular solutions and the possibility of not finding explicit solutions,

we should refine our procedure for solving a separable differential equation to:

1. Get the differential equation into the form

dy

dx
= f (x)g(y) . (4.10)

2. Identify all constant solutions by finding all values y0 , y1 , y2 , … such that

g(yk) = 0 ,

and then write down

y(x) = y0 , y(x) = y1 , y(x) = y2 , . . . .

(These are the constant solutions.)

3a. Divide equation (4.10) through by g(y) to get

1

g(y)

dy

dx
= f (x)

(assuming y is not one of the constant solutions just found).

b. Integrate both sides of the equation just obtained with respect to x .

c. Solve the resulting equation for y , if practical (thus obtaining an explicit solution). If

not practical, use that resulting equation as an implicit solution, possibly rearranged or

simplified if appropriate.

4. If constant solutions were found, see if the formulas obtained for the other solutions can

be tweaked to also describe the constant solutions. In any case, be sure to write out all

solution(s) obtained.

The above yields the general solution. If initial values are also given, then use those initial

conditions with the general solution just obtained to derive the particular solutions satisfying the

given initial-value problems.

4.5 Existence, Uniqueness, and False Solutions
On the Existence and Uniqueness of Solutions

Let’s consider a generic initial-value problem involving a separable differential equation,

dy

dx
= f (x)g(y) with y(x0) = y0 .
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Letting F(x, y) = f (x)g(y) this is

dy

dx
= F(x, y) with y(x0) = y0 ,

which was the initial-value problem considered in theorem 3.1 on page 48. That theorem assures

us that there is exactly one solution to our initial-value problem on some interval (a, b) containing

x0 provided

F(x, y) = f (x)g(y)

and
∂ F

∂y
= ∂

∂y
[ f (x)g(y)] = f (x)g′(y)

are continuous in some open region containing the point (x0, y0) . This means our initial-value

problem will have exactly one solution on some interval (a, b) provided f (x) is continuous

on some open interval containing x0 , and both g(y) and g′(y) are continuous on some open

interval containing y0 . In practice, this is typically what we have.

Typically, also, one rarely worries about the existence and uniqueness of the solution to an

initial-value problem with a separable differential equation, at least not when one can carry out

the integration and algebra required by our procedure. After all, doesn’t our refined procedure

for solving separable differential equations always lead us to “the solution”? Well, here are two

reasons to have at least a little concern about existence and uniqueness:

1. After the integration in step 3, the resulting equation may involve a nontrivial formula of

y . After applying the initial condition and solving for y , it is possible to end up with more

than one formula for y(x) . But as long as f , g and g′ are sufficiently continuous, the

above tells us that there is only one solution. Thus, only one of these formulas for y(x)

can be correct. The others are “false solutions” that should be identified and eliminated.

(An example is given in the next subsection.)

2. Suppose g(y0) = 0 . Our refined procedure tells us that the constant function y = y0 ,

which certainly satisfies the initial condition, is also a solution to the differential equation.

So y = y0 is immediately seen to be a solution to our initial-value problem. Do we then

need to go through the rest of our procedure to see if any other solutions to the differential

equation satisfy y(x0) = y0 ? The answer is No, not if f is continuous on an open interval

containing x0 , and both g and g′ are continuous on an open interval containing y0 .

If that continuity holds, then the above analysis assures us that there is only one solution.

Thus, if we find a solution, we have found the solution.

It is possible, to have an initial-value problem

dy

dx
= f (x)g(y) with y(x0) = y0 ,

in which the f or g or g′ is not suitably continuous. The problem in exercise 3.5 on page 70,

dy

dx
= 2

√
y with y(1) = 0 ,

is one such problem. Here,

y0 = 0 , f (x) = 1 , g(y) = 2
√

y and g′(y) = 1
√

y
.
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Clearly, g and, especially, g′ are not continuous in any open interval containing y0 = 0 . So

the above results on existence and uniqueness cannot be assumed. Indeed, in this case there is

not just the one constant solution y = 0 , but, as shown in that exercise, there are many different

solutions, including

y(x) =

{

0 if x < 1

(x − 1)2 if 1 ≤ x

}

and y(x) =

{

0 if x < 3

(x − 3)2 if 3 ≤ x

}

.

A Caution on False Solutions

It is always a good idea to verify that any ‘solution’ obtained in solving a differential equation

really is a solution. This is even more true when solving separable differential equations. Not

only does the extra algebra involved naturally increase the likelihood of human error, this algebra

can, as noted above, lead to ‘false solutions’ — formulas that are obtained as solutions, but do

not actually satisfy the original problem.

!◮Example 4.9: Consider the initial-value problem

dy

dx
= 2

√
y with y(0) = 4 .

The differential equation does have one constant solution, y = 0 , but since that doesn’t

satisfy the initial condition, it hardly seems relevant. To find the other solutions, let’s divide

the differential equation by
√

y and proceed with the basic procedure:

1
√

y

dy

dx
= 2

→֒
∫

1
√

y

dy

dx
dx =

∫

2 dx

→֒
∫

y−1/2 dy =
∫

2 dx

→֒ 2y
1/2 = 2x + c .

Dividing by 2 and squaring (and letting a = c/2 ), we get

y = (x + a)2 . (4.11)

Plugging this into the initial condition, we obtain

4 = y(0) = (0 + a)2 = a2 ,

which means that

a = ±2 .

Hence, we have two formulas for the solution to our initial-value problem,

y+(x) = (x + 2)2 and y−(x) = (x − 2)2 .
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Both satisfy the initial condition. Do both satisfy the differential equation

dy

dx
= 2

√
y ?

Well, plugging

y = y±(x) = (x ± 2)2

into the differential equation yields

d

dx
(x ± 2)2 = 2

√

(x ± 2)2

→֒ 2(x ± 2) = 2
√

(x ± 2)2 .

So, for y = y±(x) to be solutions to our differential equation, we must have

x ± 2 =
√

(x ± 2)2 (4.12)

for all values of x ‘of interest’. In particular, this equation must be valid at the initial point

x = 0 .

So, consider what happens to equation (4.12) at the initial point x = 0 . With y = y+(x)

and x = 0 equation (4.12) becomes

0 + 2 =
√

(0 + 2)2 =
√

4 ,

which, of course, simplifies to the perfectly acceptable equation

2 = 2.

But with y = y−(x) and x = 0 we get

0 − 2 =
√

(0 − 2)2 =
√

4 = 2 ,

which, of course, simplifies to

−2 = 2 ,

which is not acceptable. So we can not accept y = y−(x) as a solution to our initial-value

problem. It was a false solution.

While we are at it, let’s look a little more closely at equation (4.12) with y = y+(x) ,

x + 2 =
√

(x + 2)2 .

Remember, if A is any real number, then

√
A2 = |A| .

So equation (4.12) with y = y+ can be written as

x + 2 = |x + 2| ,

which is true if and only if x + 2 ≥ 0 (i.e., x ≥ −2 ). This means that our solution,

y = y+(x) , is not valid for all values of x , only for those greater than or equal to −2 . Thus,

the actual solution that we have is

y = y+(x) = (x + 2)2 for − 2 ≤ x .
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There was a lot of analysis done in the last example after obtaining the apparent solutions

y = (x ± 2)2 .

Don’t be alarmed. In most of the problems you will be given, verifying that your formula is a

solution should be fairly easy. Still, take the moral of this example to heart: It is a good idea to

verify that any formulas derived as solutions truly are solutions.

By the way, in a later chapter we will develop some graphical technics that would have

simplified our work in the above example.

4.6 On the Nature of Solutions to Differential
Equations

When we solve a first-order directly integrable differential equation,

dy

dx
= f (x) ,

we get something of the form

y = F(x) + c

where F is any antiderivative of f and c is an arbitrary constant. Computationally, all we have

to do is find a single antiderivative F for f and then add an arbitrary constant. Thus, also, the

graph of any possible solution is nothing more than the graph of F(x) shifted vertically by the

value of c (up if c > 0 , down if c < 0 ). What’s more, the interval for x over which

y = F(x) + c

is a valid solution depends only on the one function F . If F(x) is continuous for all x in an

interval (a, b) , then (a, b) is a valid interval for our solution. This interval does not depend on

the choice for c .

The situation can be much more complicated if our differential equation is not directly

integrable. First of all, finding an explicit solution can be impossible. And consider those

explicit general solutions we have found,

y = tan
(

1

3
x3 + c

)

(from example 4.3 on page 75)

and

y = 3 ±
√

a − x2 (from example 4.4 on page 77) .

In both of these, the arbitrary constants are not simply “added on” to some formula of x . Instead,

each solution formula combines the variable, x , with the arbitrary constant, c or a , in a very

nontrivial manner. There are two immediate consequences of this:

1. The graphs of the solutions are no longer simply vertically shifted copies of some single

function.

2. The possible intervals over which any solution is valid may depend on the arbitrary

constant. And since the value of that constant can be determined by the initial condition,

the interval of validity for our solutions may depend on the initial condition.
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(a) (b)

Figure 4.2: The graph of y = tan
(

1
3

x3 + c
)

(a) when y(0) = 0 and (b) when y(0) = 2 .

Both of these consequences are illustrated in figure 4.2, in which the graphs of two solutions to

the differential equation in example 4.3 have been sketched corresponding to two different initial

values (namely, y(0) = 0 and y(0) = 2 ). In these figures you can see how changing the initial

condition from y(0) = 0 to y(0) = 2 changes the interval over which the solution exists. Even

more apparent is that the graph corresponding to y(0) = 2 is not merely a ‘shift’ of the graph

corresponding to y(0) = 0 ; there is also a small but clear distortion in the shape of the graph.

The possible dependence of a solution’s interval of validity is even better illustrated by the

solutions obtained in example 4.4. There, the differential equation was

dy

dx
= − x

y − 3

and the general solution was found to be

y = 3 ±
√

a − x2 .

The arbitrary constant here, a , occurs in the square root. For this square root to be real, we must

have

a − x2 ≥ 0 .

That is,

−
√

a ≤ x ≤
√

a

is the maximal interval over which

y = 3 +
√

a − x2 and y = 3 −
√

a − x2

are valid solutions.

To properly indicate this dependence of the solution’s possible domain on the arbitrary

constant or the initial value, we should state the maximal interval of validity along with any

formula or equation describing our solution(s). For example 4.4, that would mean writing the

general solution as

y = 3 ±
√

a − x2 for all −
√

a ≤ x ≤
√

a .
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When this is particularly convenient or noteworthy, we will attempt to remember to do so. Even

when we don’t, keep in mind that there may be limits as to the possible values of x , and that

these limits may depend on the values assumed by the arbitrary constants.

By the way, notice also that the above a cannot be negative (otherwise,
√

a will not be

a real number). This points out that, in general, the ‘arbitrary’ constants appearing in general

solutions are not always completely arbitrary.

4.7 Using and Graphing Implicit Solutions

Outside of courses specifically geared towards learning about differential equations, the main

reason to solve an initial-value problem such as

dy

dx
= x + 1

8 + 2π sin(yπ)
with y(0) = 2

is so that we can predict what values y(x) will assume when x has values other than 0 . In

practice, of course, y(x) will represent something of interest (position, velocity, promises made,

number of ducks, etc.) that varies with whatever x represents (time, position, money invested,

food available, etc.). When the solution y is given explicitly by some formula y(x) , then those

values are relatively easily obtained by just computing that formula for different values of x ,

and a picture of how y(x) varies with x is easily obtained by graphing y = y(x) . If, instead,

the solution is given implicitly by some equation, then the possible values of y(x) for different

x’s , along with any graph of y(x) , must be extracted from that equation. It may be necessary

to use advanced numerical methods to extract the desired information, but that should not be

a significant problem — these methods are probably already incorporated into your favorite

computer math package.

!◮Example 4.10: Let’s consider the initial-value problem

dy

dx
= x + 1

8 + 2π sin(yπ)
with y(0) = 2 .

In example 4.8, we saw that the general solution to the differential equation is given implicitly

by

8y − 2 cos(yπ) = 1

2
x2 + x + c . (4.13)

The initial condition y(0) = 2 tells us that y = 2 when x = 0 . With this assumed, our

implicit solution reduces to

8 · 2 − 2 cos(2π) = 1

2

[

02
]

+ 0 + c .

So

c = 8 · 2 − 2 cos(2π) − 1

2

[

02
]

− 0 = 16 − 2 = 14 .

Plugging this back into equation (4.13) gives

8y − 2 cos(yπ) = 1

2
x2 + x + 14 (4.14)
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Figure 4.3: Graph of the implicit solution to the initial-value problem of example 4.10.

(Graph created using Maple.)

as an implicit solution for our initial-value problem.

Replacing c with 14 does not make it any easier for us to convert this equation relating

y and x into a formula y(x) for y . Still, y = y(x) must satisfy equation (4.14), and the

graph of that equation can be generated by invoking the appropriate command(s) in a suitable

computer math package. That is how the graph in figure 4.3 was created. From this graph, we

see that the value of y(8) is between 6 and 7 . For a more precise determination of y(8) ,

set x = 8 in equation (4.14). This gives us

8y − 2 cos(yπ) = 1

2
82 + 8 + 14 ,

which, after a little arithmetic, reduces to

8y − 2 cos(yπ) = 54 .

Now apply some numerical method (such as the Newton-Raphson method for finding roots5)

to find, approximately, the corresponding value of y . Again, we need not do the tedious com-

putations ourselves; we can go to our favorite computer math package, look up the appropriate

commands, and let it compute that value for y . Doing so, we find that y(8) ≈ 6.642079594 .

Any curve that is at least part of the graph of an implicit solution for a differential equation is

called an integral curve for the differential equation. Remember, this is the graph of an equation.

If a function y(x) is a solution to that differential equation, then y = y(x) must also satisfy

any equation serving as an implicit solution, and, thus, the graph of that y(x) (which we will

call a solution curve) must be at least a portion of one of the integral curves for that differential

equation. Sometimes an integral curve will be a solution curve. That is “clearly” the case in

figure 4.3, because that curve is “clearly” the graph of a function (more on that later).

Sometimes though, there are two (or more) different functions y1 and y2 such that both

y = y1(x) and y = y2(x) satisfy the same equation for the same values of x . If that equation is

an implicit solution to some differential equation, then its graph (the integral curve) will contain

the graphs of both y = y1(x) and y = y2(x) . In such a case, the integral curve is not a solution

curve, but contains two or more solution curves.

5 It should be in your calculus text.
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To illuminate these comments, let us look at the solution curves and integral curves for one

equation we’ve already solved. At the same time, we will discover that, at least occasionally, the

use of implicit solutions can simplify our work, even when explicit solutions are available.

!◮Example 4.11: Consider graphing both all the solutions to

dy

dx
= − x

y − 3

and the particular solution satisfying

y(0) = 1 .

In example 4.4 (starting on page 77), we “separated and integrated” this differential equation

to get the implicit solution

y2 − 6y = −x2 + c . (4.15)

We were then able to solve this equation for y in terms of x by using the quadratic formula.

This time, rather than attempting to solve for y , let’s simply move the x2 to the left,

obtaining

x2 + y2 − 6y = 2c .

This looks suspiciously like an equation for a circle. Writing 6 as 2 · 3 and adding 32 to

both sides (to complete the square in the y terms) makes it look even more so:

x2 + y2 − 2 · 3y + 32

︸ ︷︷ ︸

(y−3)2

= 2c + 32

→֒ (x − 0)2 + (y − 3)2 = 2c + 9 .

Since the left-hand side is the sum of squares, it cannot be negative; hence, neither can the

right-hand side. So we can let R =
√

2c + 9 and write our equation as

(x − 0)2 + (y − 3)2 = R2 . (4.16)

You should recognize this implicit solution for our differential equation as also being the

equation for a circle of radius R centered at (0, 3) . One such circle (with R = 2 ) is

sketched in figure 4.4a. These circles are integral curves for our differential equation. In this

case, we can find the solution curves by solving our last equation for the explicit solutions

y = 3 ±
√

R2 − x2 .

The solution curves, then, are the graphs of y = y−(x) and y = y+(x) where

y+(x) = 3 +
√

R2 − x2 and y−(x) = 3 −
√

R2 − x2 .

Since we must have R2 − x2 ≥ 0 for the square roots, each of these functions can only be

defined for

−R ≤ x ≤ R .

Observe that the graphs of these functions are not the entire circles of the integral curves, but

are semicircles, with the graph of

y = 3 +
√

R2 − x2 with − R ≤ x ≤ R
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(a) (b)

Figure 4.4: (a) The integral curve and (b) the solution curve for the differential equation in

example 4.11 containing the point (x, y) = (0, 1) .

being the upper half of the circle of radius R about (0, 3) , and the graph of

y = 3 −
√

R2 − x2 with − R ≤ x ≤ R

being the lower half of that same circle.

If we further require that y(0) = 1 , then implicit solution (4.16) becomes

(0 − 0)2 + (1 − 3)2 = R2 .

So R = 2 , and y = y(x) must satisfy

(x − 0)2 + (y − 3)2 = 22 . (4.17)

Solving this for y in terms of x , we get the two functions

y+(x) = 3 +
√

22 − x2 with − 2 ≤ x ≤ 2

and

y−(x) = 3 −
√

22 − x2 with − 2 ≤ x ≤ 2 .

The graph of equation (4.17) (an integral curve) is a circle of radius 2 about (0, 3) (see figure

4.4a). It contains the point (x, y) = (0, 1) corresponding to the initial value y(0) = 1 . To

be specific, this point, (0, 1) , is on the lower half of that circle (the solution curve for y−(x) )

and not on the upper half (the solution curve for y+(x) ). Thus, the (explicit) solution to our

initial-value problem is

y = y−(x) = 3 −
√

22 − x2 with − 2 ≤ x ≤ 2 .

This is the solution curve sketched in figure 4.4b.

Let us now consider things more generally, and assume that we have any first-order differ-

ential equation that can be put into derivative formula form. Since what follows does not require

“separability”, let us simply assume we’ve managed to get the differential equation into the form

dy

dx
= F(x, y)
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Xx0

y0 (x0, y0)

(x1, y1)

y = y1(x)

y = y2(x)

Figure 4.5: An integral curve containing two solution curves, with the portion above y0

being the graph of y2(x) and the portion below y0 being the graph of y1(x) .

where F(x, y) is some formula of x and y . This equation might be a separable differential

equation such as
dy

dx
= − x

y − 3
,

or it might be one like
dy

dx
= x2 y2 + 4 ,

which is not separable. Suppose further that, either using methods developed in this chapter

or methods that will be developed later, we have found an integral curve for this differential

equation.

If no two distinct points on this integral curve have the same x-coordinate, then this curve

is the graph of a function y = y(x) that satisfies the differential equation (whether or not we

can solve for the formula y(x) ). So the entire integral curve is a solution curve.

On the other hand, if there are two points on this curve with the same x-coordinate, then the

curve has to ‘bend back’ on itself at some point (x0, y0) . At this point, the curve changes from

being the graph of one solution y = y1(x) to being the graph of another solution y = y2(x) .

Also, at this point, the tangent line to the integral curve must be vertical (i.e., have “infinite

slope”), provided that tangent line exists (see figure 4.5). But the slope of the tangent line to the

graph of a differential equation’s solution at any point (x, y) is simply the derivative dy/dx of

the solution at that point, and that value can be computed directly from the differential equation

dy

dx
= F(x, y) .

Thus, (x0, y0) , a point at which the integral curve ‘bends back on itself’, must be a point at

which F(x, y) becomes infinite (or, otherwise fails to exist).

Mind you, we cannot say that a curve ‘bends back on itself’ at a point just because the

derivative becomes infinite there. Many functions have isolated points at which their derivative

becomes infinite or otherwise fails to exist. Just look at point (x1, y1) in figure 4.5. Or consider

y(x) = 3x
1/3 .

This is a well-defined function on the entire real line whose derivative, y′(x) = x−2/3 , blows up

at x = 0 . So all we can say is that, if the curve does ‘bend back on itself’ then it can only do so

at points where its derivative either becomes infinite or otherwise fails to exist.

Here is a little theorem summarizing some what we have just discussed.
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Theorem 4.1

Let C be a curve contained in the graph of an implicit solution for some first-order differential

equation
dy

dx
= F(x, y) .

If F(x, y) is a finite number for each point (x, y) in C , then C is the graph of a function

satisfying the given differential equation (i.e., C is a solution curve).

?◮Exercise 4.2: Explain why the integral curve graphed in figure 4.3 is “clearly” a solution

curve.

4.8 On Using Definite Integrals with Separable
Equations

Just as with any directly integrable differential equation, a separable differential equation

dy

dx
= f (x)g(y) ,

once separated to the form
1

g(y)

dy

dx
= f (x) ,

can be integrated using definite integrals instead of the indefinite integrals we’ve been using. The

basic ideas are pretty much the same as for directly integrable differential equations:

1. Pick a convenient value for the lower limit of integration, a . In particular, if the value

of y(x0) is given for some point x0 , set a = x0 .

2. Rewrite the differential equation with s denoting the variable instead of x . This means

that we rewrite our separable equation as

dy

ds
= f (s)g(y) ,

which ‘separates’ to
1

g(y)

dy

ds
= f (s) .

3. Then integrate each side with respect to s from s = a to s = x .

The integral on the left-hand side will be of the form

∫ x

s=a

1

g(y)

dy

ds
ds .

Keep in mind that, here, y is some unknown function of s , and that the limits in the integral are

limits on s . Using the substitution y = y(s) , we see that

∫ x

s=a

1

g(y)

dy

ds
ds =

∫ y(x)

y=y(a)

1

g(y)
dy .
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Do not forget to convert the limits to being the corresponding limits on y , instead of s .

Once the integration is done, we attempt to solve the resulting equation for y(x) just as

before.

!◮Example 4.12: Let us solve

dy

dx
= 1

2y
e−x2

with y(0) = 3

using definite integrals. Proceeding as described above:

dy

dx
= 1

2y
e−x2

→֒ 2y
dy

dx
= e−x2

→֒ 2y
dy

ds
= e−s2

→֒
∫ x

s=0

2y
dy

ds
ds =

∫ x

s=0

e−s2

ds .

Since y(0) = 3 , we can rewrite the last equation as
∫ y(x)

y=3

2y dy =
∫ x

s=0

e−s2

ds .

The integral on the left is easily evaluated; the one on the right is not. Doing the easy integration

and solving for y , we get

y2
∣
∣

y(x)

y=3
=

∫ x

s=0

e−s2

ds

→֒ [y(x)]2 − 32 =
∫ x

s=0

e−s2

ds

→֒ [y(x)]2 = 9 +
∫ x

s=0

e−s2

ds .

So

y(x) = ±
[

9 +
∫ x

s=0

e−s2

ds

]1/2

.

Plugging in the initial value again,

3 = y(0) = ±
[

9 +
∫ 0

s=0

e−s2

ds

]1/2

= ± [9 + 0]
1/2 ,

we clearly see that the ± should be + , not − . Thus, the solution to our initial-value problem

is

y =
[

9 +
∫ x

s=0

e−s2

ds

]1/2

.

Going back to the section on “named integrals” in chapter 2 (see page 30), we see that we can

also express this as

y =
[

9 +
√

π

2
erf(x)

]1/2

.



Additional Exercises 99

The advantages of using definite integrals in solving a separable differential equation

dy

dx
= f (x)g(y)

are the same as in solving a directly integrable differential equation:

1. The solution directly involves the initial value instead of a constant to be determined from

the initial value, and

2. Even if a ‘nice’ formula for
∫ x

a

f (s) ds

cannot be found, the value of this integral can be closely approximated for specific values

of x using standard methods (which are already in many computer math packages).

Using these values for this integral, it is then often possible to find the corresponding

values for y(x) for specific values of x .

Unfortunately, we still have a serious problem if we cannot find a usable formula for

∫ y(x)

y(a)

1

g(y)
dy

since the numerical methods for computing this integral require knowing the value of y(x) for

the desired choice of x , and that y(x) is exactly what we do not know.

Additional Exercises

4.3. Determine whether each of the following differential equations is or is not separable,

and, if it is separable, rewrite the equation in the form

dy

dx
= f (x)g(y) .

a.
dy

dx
= 3y2 − y2 sin(x) b.

dy

dx
= 3x − y sin(x)

c. x
dy

dx
= (x − y)2 d.

dy

dx
=

√

1 + x2

e.
dy

dx
+ 4y = 8 f.

dy

dx
+ xy = 4x

g.
dy

dx
+ 4y = x2 h.

dy

dx
= xy − 3x − 2y + 6

i.
dy

dx
= sin(x + y) j. y

dy

dx
= ex−3y2
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4.4. Using the basic procedure, find the general solution to each of the following separable

equations:

a.
dy

dx
= x

y
b.

dy

dx
= y2 + 9

c. xy
dy

dx
= y2 + 9 d.

dy

dx
= y2 + 1

x2 + 1

e. cos(y)
dy

dx
= sin(x) f.

dy

dx
= e2x−3y

4.5. Using the basic procedure, find the solution to each of the following initial-value prob-

lems:

a.
dy

dx
= x

y
with y(1) = 3

b.
dy

dx
= 2x − 1 + 2xy − y with y(0) = 2

c. y
dy

dx
= xy2 + x with y(0) = −2

d. y
dy

dx
= 3

√

xy2 + 9x with y(1) = 4

4.6. Find all the constant solutions — and only the constant solutions — to each of the

following. If no constant solution exists, say so.

a.
dy

dx
= xy − 4x b.

dy

dx
− 4y = 2

c. y
dy

dx
= xy2 − 9x d.

dy

dx
= sin(y)

e.
dy

dx
= ex+y2

f.
dy

dx
= 200y − 2y2

4.7. Find the general solution for each of the following. Where possible, write your answer

as an explicit solution.

a.
dy

dx
= xy − 4x b.

dy

dx
= 3y2 − y2 sin(x)

c.
dy

dx
= xy − 3x − 2y + 6 d.

dy

dx
= tan(y)

e.
dy

dx
= y

x
f.

dy

dx
= 6x2 + 4

3y2 − 4y

g.
(

x2 + 1
)dy

dx
= y2 + 1 h.

(

y2 − 1
)dy

dx
= 4xy2

i.
dy

dx
= e−y j.

dy

dx
= e−y + 1

k.
dy

dx
= 3xy3 l.

dy

dx
= 2 +

√
x

2 + √
y

m.
dy

dx
− 3x2 y2 = −3x2 n.

dy

dx
− 3x2 y2 = 3x2

o.
dy

dx
= 200y − 2y2
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4.8. Solve each of the following initial-value problems. If possible, express each solution

as an explicit solution.

a.
dy

dx
− 2y = −10 with y(0) = 8

b. y
dy

dx
= sin(x) with y(0) = −4

c. x
dy

dx
= y2 − y with y(1) = 2

d. x
dy

dx
= y2 − y with y(1) = 0

e.
(

y2 − 1
)dy

dx
= 4xy with y(0) = 1

f.
dy

dx
= y2 − 1

xy
with y(1) = −2

4.9. In chapter 10, when studying population growth, we will obtain the “logistic equation”

dy

dx
= βy − γ y2

with β and γ being positive constants.

a. What are the constant solutions to this equation?

b. Find the general solution to this equation.

4.10. For each of the following initial-value problems, find the largest interval over which the

solution is valid. (Note: You’ve already solved these initial-value problems in exercise

set 4.8 or at least found the general solution to the differential equation in 4.7.)

a.
dy

dx
− 2y = −10 with y(0) = 8

b. x
dy

dx
= y2 − y with y(1) = 2

c. x
dy

dx
= y2 − y with y(1) = 0

d.
dy

dx
= e−y with y(0) = 1

e.
dy

dx
= 3xy3 with y(0) = 1
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