Regular Singular Points

It is of interest to solve the differential equation

N(z)y" + P(z)y' + Q(z)y = 0, 1)

or, in standard form,

y" + p(2)y +q(x)y = 0. (2)

in the neighborhood of a singular point, as the behavior of the solutions there may be among their
most important features. When the singularities are not too wild, a modification of the technique
of power series can be used to calculate the solutions there.

To simplify the discussion, we shall restrict attention to equations of the form (1) where N, P, and
@ are polynomials, which we may assume to have no common factors. (This situation includes the
most important examples.) The singular points of the equation are then the points where N(z) = 0.
Suppose 7z is a singular point. Multiplying through by (z — z¢)?/N(z), we may rewrite (1) as

(x — 20)%y" + (x — mo)u(z)y' + v(z)y = 0, (3)

where
@-zPl@) v (@=20)°Q(2)

We say that z, is a regular singular point if the rational functions u(z) and v(x) have no singularity
at ro—that is, if the factors of © — 2o in N(x) that cause N(x) to vanish at z, are canceled by such
factors in (x — z¢) P(x) and (z — 74)?Q(x). Otherwise x; is an irregular singular point.

Example 1. The singular points of the equation
2 (x —2)%" + (z —2)y + 327y =0
are 0 and —2. At o = 0 we have
u(z) = z(z — 2)/2°(x — 2)> = 1/x(z — 2)
and
v(z) = (2%)(32%) /2’ (z - 2)° = 32°/(z — 2)*

v(x) is nonsingular at £ = 0 but u(z) blows up, so 0 is an irregular singular point. At zo = 2 we
have
u(z) = (z — 2)(z — 2)/2*(x — 2)* = 1/2?

and
v(z) = (z — 2)*(32%)/2*(z — 2)* = 3;

these are both nonsingular at x = 2, so 2 is a regular singular point.

Henceforth we consider a fixed regular singular point xy, and by the usual change of variable we
assume that zo = 0.



The simplest examples of equations with a regular singular point at zy = 0 are the Euler equations

z*y" + azxy' + by = 0, (5)
which are of the form (3) with u = a and v = b. In the previous set of notes we saw that if r;, and
r9 are the roots of the equation

r(r—1)4+ar+b—0,

then the solutions of (5) are linear combinations of ™ and z™, or 2™ and z" log |z| when 7o = 71—
with suitable interpretation if r; and ry are complex numbers or if they are nonintegers and = < 0.
Now, if u(z) and v(z) are continuous at 0, the general equation (3) (with zy = 0) looks very much
like the Euler equation

22y" +u(0)zy +v(0)y =0 (6)

near x = 0, so we would expect its solutions to resemble linear combinations of 2™ and z" near
x = 0, for suitable r; and r9. This suggests that we should look for solutions of the form

y=a"[ag + a7 + agz® + -] = ZCLMHT, ap # 0. (7)
0

We require that ag # 0 because we want the leading term of the series to be " and not some higher
power of x.

We proceed just as in the construction of series solutions about an ordinary (nonsingular) point.
That is, we plug (7) into the differential equation—usually in the original form (1) rather than
(3)—and obtain a sequence of equations for the coefficients a; that can be solved recursively. The
main difference occurs at the initial step. In the previous situation, ag and a; could be chosen
arbitrarily, and we got two independent solutions by making different choices of ay and a;. In the
present situation, ay is usually determined by ag, and we get two independent solutions by using
two different values of r.

In more detail: When we plug (7) into the left side of (1) or (3) and set the coefficients of the
various powers of x equal to zero, we get a sequence of equations involving the a;’s that look like
this:

F(r)ay =0, (8.0)

for k > 0, F(k + r)ay = terms involving ao, ... , ax_1,

where F' is a certain quadratic polynomial. (Up to a constant factor, it is the polynomial corre-
sponding to the Euler equation (6).) Since we require ag # 0, (8.0) is equivalent to F'(r) = 0. This
is called the indicial equation for the singular points, and its two roots r; and 7o are called the
characteristic exponents. We then obtain two distinct solutions by taking r = r; or r = ry and
solving the equations (8) recursively for the a;’s. As in the case of ordinary points, it can be shown
that the radius of convergence of the resulting series is at least the distance to the nearest other
singular point.

There are two situations in which this procedure fails to yield the general solution of the differential
equation. First, if 7o = r;, we clearly get only one solution this way. The other peculiar case is
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when r; and ry differ by an integer—say, ro = r; — N, taking r; to be the larger one. Here our
procedure always yields a solution with r = r1; but when r = 7y the coefficient of ay in (8.N) is
F(ro+ N) = F(r;) = 0. Usually this means that we cannot solve for ay and our method fails to
yield a second solution. However, occasionally the other terms in (8.N) will also cancel out, so that
(8.N) collapses to the triviality 0 - ay = 0; in this case we can take ay = 0 and proceed.

When our procedure yields only one solution, the second solution will involve In z as well as powers
of x. We shall say no more about it here. The full story can be found, for example, in Ordinary
Differential Equations by G. Birkhoff and G. C. Rota.

Example 2. Let us solve the equation
22%y" — xy' + (1 + 2)y = 0, 9)

which has a regular singular point at x = 0. Substituting y = Y_ a;z**" in the left side of (9) yields

22(k+r)(k+r— Dagz"™" —Z(k+r Zh +Za :c“’“%—Zak L (10)
0 0

To obtain the last sum, we have taken the series Y o~ apz**'*" for zy and shifted the index of
summation to make the exponent of x match up with that in the other sums. The total coefficient
of " in (10) is

2r(r—1) —7+1]ag = (2r — 1)(r — 1)ag

(Note that the last sum in (10) does not contribute here.) Since we assume ay # 0, we must have
r=1lorr= % These are the characteristic exponents.
For k > 1, the coefficient of z**" in (9) is

Rk+r)k+r—1)—(k+7r)+1ar +ag—1 = 2k +2r — 1)(k + 7 — 1)ag + ag_1.
Setting this equal to zero, we obtain the recursion formula

ak:_(2k+2r—igzk+r—1)' (11)

If we take r = 1, (11) becomes ay = ax—1/(2k + 1)k, which gives

0 = _ Gy a a; agp o = (_1)ka0
! b T Bs 2k + D]k

3.1 T 5.2 [Boopr

On the other hand, if we take 7 = 1, (11) becomes a; = —a;_1/k(2k — 1), so

Qo aq Qo a (—1)’“&0
a1 = ——- Qo = — = “ e = .
T P 2.3 213 P TR -3 (26— 1)]
Thus the general solution is ¢1y; + coy2 where
oo )k k+1 k 2k+(1/2)

Z1 35 -2k + D]k Ezmu 3. (2k—1)
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Example 3. Consider the equation zy” + 3y’ — zy = 0. Setting y = > ° a,z**", we get

o0

Z(k +r)(k+7r—1)apz"t 4+ 3 Z(k + r)apzt T 4 Z Aozl =0, (12)
0 0 0

where, for the last term, we have put zy = ° apz*t7! and then shifted the index of summation
so that the exponent of z is k + 7 — 1 throughout. Setting the coefficient of 2*+7~! equal to 0, we
obtain:

k=0:[r(r—1)4+3r]ag =0, (13.0)
k=1:[14+7r)r+3(1+r)a =0, (13.1)
kE>2:[(k+r)k+r—1)4+3(k+7)]ax —ag—2=(k+7)(k+7+2)ar — ag—o = 0. (13.k)

(The last sum on the left of (13) contributes only when £ > 2.) Since ag # 0, (13.0) gives the
indicial equation 72 4+ 2r = 0, so the characteristic exponents are 0 and —2.
First take » = 0. Then (13.1) becomes 3a; = 0, so a; = 0. Also, (13.k) becomes

ap = ak_g/k(k —+ 2).

Hence:
ay as
a3:ﬁ=0, a5:ﬁ:0’ vty Gonyr =0
and
Qo a2 Qo Qo
2T MTrs 226 T "MT o e @ (20)2@2n+2)

Thus one solution is

2n & 2n

= T T
?/122 2. 62 2 :Z on :
—2-4.6°---(2n)*(2n + 2) —~ 22"nl(n +1)!

Now take » = —2. Here (13.1) becomes —a; = 0so a; = 0. But (13.k) becomes (k—2)kay—ag—2 = 0,
and for £ = 2 this says 0 - as — ag = 0. Since @y # 0 this is impossible, and there is no solution of
the form " ° apz* 2.

Example 4. Let us modify the previous example slightly: zy” + 4y’ — xy = 0. The analogue of
equations (13) here is

[r(r — 1) + 4r]ag = 0, (14.0

[(1+7r)r+4(1+7)]a =0, (14.1

(k+r)k+r+3)ar—ar2=0  (k>2). (14.k

The indicial equation (14.0) is r(r +3) = 0, so r = 0 or = —3. For either of these values, (14.1
implies that a; = 0. Taking r = 0, we can then use (14.k) to solve for all the a; as in Example 3 to
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get a solution y;. On the other hand, if we take r = —3, (14.k) becomes k(k — 3)ay = ax_2. When
k = 3, this says 0 - a3 = a1, which is automatically true since a; = 0. Thus, in this case, we can
choose a3 at will and then use (14.k) to determine all the other a;z. The simplest choice is a3 = 0,
which leads to a solution ys in which ay = 0 for all odd k. (If we chose another a3, we would get
Y2 + azy; instead.) We leave it as an exercise to verify that y; and y, are given by

2n & 2n—3

> X X
=1 =73 - )
u +;2”n![5-7---(2n+3)]’ 2= ZI:an![1-3---(2n—3)]




