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1.) Consider the differential equation (xn + yn)y′ − xn−1y = 0 for x, y > 0.
(a)[07] For which value(s) of n is the equation exact?

Solution:

Rewriting the DE: (xn + yn)dy − xn−1ydx = 0. We set:

M = −xn−1y and N = xn + yn.

Exactness implies
∂M

∂y
=
∂N

∂x
which is equivalent to:

−xn−1 = nxn−1

=⇒ n = −1

�



(b)[18] When the equation is not exact, find an integrating factor and determine the general solution.

Solution:

We let n 6= −1. An integrating factor µ is either a function of x or of y.

My −Nx

N
= −(n+ 1)xn−1

xn + yn
is not a function of x only.

Nx −My

M
= −(n+ 1)xn−1

xn−1y
= −n+ 1

y
is a function of y only, and hence an integrating

factor µ = µ(y) can be obtained via:

µ(y) = exp

[
−

∫
n+ 1

y
dy

]
= exp[−(n+ 1) ln y] = y−(n+1).

Thus the DE when multiplied by µ(y):

(xny−(n+1) + y−1)dy − xn−1y−ndx = 0

becomes exact. Now we seek a differentiable F (x, y) such that:

∂F

∂x
= −xn−1y−n and

∂F

∂y
= xny−(n+1) + y−1,

so that our DE takes the form dF = 0 and F (x, y) = constant is the solution. Integrating
the first one:

F = −xny−n/n+ φ(y)

provided n 6= 0. If n = 0 this integral is not correct because of the division by n. Now
comparing ∂F/∂y obtained in two ways we find that:

−xny−n−1 + φ′ = −xny−n−1 + y−1

which implies φ(y) = ln y. This is if n 6= 0.

If n = 0, then F = − lnx+ ψ(y). Moreover:

∂F

∂y
= 2y−1 = ψ′ =⇒ ψ(y) = 2 ln y.

Hence the general solution of the DE is:

if n 6= 0 then F (x, y) = −xny−n/n+ ln y = c1

if n = 0 then F (x, y) = − lnx+ 2 ln y = c2 =⇒ F (x, y) = ln y2/x = c2 =⇒ y = c
√
x

[Note that all the intermediate integration constants may be omitted as we correct this
in the end of the process.]

�



2.) Let y′′ + (α+ 2)y′ + 2αy = 0 be a constant coefficient differential equation, where α ∈ R.
(a)[09] Find the general solution for any α.

Solution:

The characteristic equation is r2 + (α + 2)r + 2α = 0. Discriminant is easily calculated
to be (α+ 2)2 − 8α = (α− 2)2. Hence roots are given by:

r1,2 =
−(α+ 2)± (α− 2)

2
=⇒ r1 = −2, r2 = −α.

Roots are both real but if α = 2 repeated. Thus the general solution is:

y =

{
c1e

−2t + c2e
−αt if α 6= 2

(c1 + c2t)e
−2t if α = 2

�

(b)[07] Analyse the large time behaviour of the solution, i.e. as t→∞.

Solution:

We check the limits as t→∞:

α 6= 2 =⇒ lim
t→∞

(c1e
−2t + c2e

−αt) = c2 lim
t→∞

e−αt =


c2 if α = 0
∞ if α < 0
0 if α > 0

α = 2 =⇒ lim
t→∞

(c1 + c2t)e
−2t = 0.

Note that e−2t → 0 as t→∞.

�

(c)[09] Find a particular solution of y′′+3y′+2y = 1+ e−t. [This is the equation above with α = 1.]

Solution:

As found in part (a) yc = c1e
−2t + c2e

−t. Hence the correct form for a particular solution
reads:

yp = Ate−t +B
=⇒ y′p = Ae−t − Ate−t

=⇒ y′′p = −2Ae−t + Ate−t

Plugging these into the DE and performing the cancellations we obtain:

Ae−t + 2B = 1 + e−t,

in which we compare the coefficients to find A = 1 and B = 1/2. Hence a particular

solution is yp = te−t + 1/2

�



3.) Consider the equation y′′ − 2

x2
y = 0 for 0 < x <∞.

(a)[10] Find the solutions of the form y = xr to this equation. Have you found all solutions of the
equation? Explain.

Solution:

Letting y = xr we get y′ = rxr−1 and y′′ = r(r − 1)xr−2. Substituting into the equation:

(r2 − r − 2)xr−2 = 0 =⇒ r2 − r − 2 = 0 =⇒ r = 2, r = −1.

Hence two fundamental solutions are y1 = x2 and y2 = x−1

Yes, every solution is of the form c1y1+c2y2 as a second order homogeneous linear equation
has exactly two fundamental solutions.

�

(b)[15] Find a particular solution of the nonhomogeneous equation y′′ − 2

x2
y = x.

Solution:

We must use variation of parameters by setting yp = v1(x)x
2 + v2(x)x

−1 as a particular
solution for some v1 and v2. This is true if:

v′1x
2 + v2x

−1 = 0
2v′1x− v′2x

−2 = x.

Solving this algebraic system by x · (2nd eqn.) + (1st eqn.) we receive:

v′1 = 1/3 =⇒ v1 = x/3 then v′2 = −x3/3 =⇒ v2 = −x4/12.

Collecting these in yp a particular solution is established to be:

yp =
x3

4

�



4.)[25] Let y′′ + p(x)y′ + q(x)y = x−1 be a second order linear differential equation defined for x > 0
with continuous p(x) and q(x) on (0,∞). Suppose that y1(x) and y2(x) are the solutions of the
corresponding homogeneous equation with Wronskian W (y1, y2)(x) = 1/x. Suppose furthermore
that yp(x) = x is a particular solution. Find the solution of the initial value problem described by
the given nonhomogeneous differential equation and the initial conditions y(1) = 0 and y′(1) = 2.

Solution:

W (y1, y2)(x) =
1

x
= c exp

[
−

∫
p(x)dx

]
by Abel’s formula. But this entails immediately:

−
∫
p(x)dx = − lnx− ln c,

which, after one differentiation, is equivalent to p(x) = 1/x.

On the other hand, yp = x is given to be a solution of the nonhomogeneous equation.
Using this fact (substitute into the eqn.) easily obtained that p(x) + xq(x) = 1/x. But
p(x) = 1/x with the immediate consequence q(x) = 0.

Since a particular solution is given we need to find the complementary solution of the
equation, namely solve:

y′′ +
y′

x
= 0.

We observe that this DE does not contain y, so order is reducible via y′ = u. We now
solve:

u′ +
u

x
= 0

which is separable:
du

u
= −dx

x
=⇒ u =

c1
x

= y′.

Integrating this once more to find y:

yc = c1 lnx+ c2.

Thus the general solution is:
y = c1 lnx+ c2 + x.

Now using the initial conditions given:

y(1) = c2 + 1 = 0 =⇒ c2 = −1
y′(1) = c1 + 1 = 2 =⇒ c1 = 1.

Solution of the IVP is y = x+ lnx− 1

�
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1. a) Prove that y = x can NOT possibly be a solution to a first order linear homogeneous
differential equation with constant coefficients.

Solution:

For such a problem Wronskian can never be zero. ∀x ∈ R but W (x) = x which
is zero at x = 0 or y = x can never be a solution to ay′ + by = 0; a, b ∈ R since
a.1 + b.x = 0 ⇒ a = b = 0

b)Show that y = x can be a solution to a (higher order) linear homogeneous differential equa-
tion with constant coefficients.

Solution:

y′′ = 0

c)Show that y = x can be a solution to a linear non-homogeneous differential equation
with constant coefficients..

Solution:

y = x is an example (0th order d.e.)

y′ = 1 is an another example(1st order d.e.).

2. Find the general solution of the differential equation
d2y

dx2
+ 3

dy

dx
+ 2y = sin ex

Solution:

Fundamental solutions {e−x, e−2x}

Variation of parameters: y = c1(x)e−x + c2(x)e−2x Since constant coefficients

c1 = ex sin ex ⇒ c1 = − cos ex



c′2 = −e2x sin ex = −ex.ex sin ex ⇒ c2 = ex cos x− sin ex

⇒ Yp = (− cos ex)e−x + (ex cos x− sin ex)e−2x = −e−2x sin ex

y = c1e
−x + c2e

−2x − e−2x sin ex

3. Find the general solution of the differential equation
d3y

dx3
− d2y

dx2
+

dy

dx
− y = 4ex + x

Solution:

Fundamental Solutions:{ex, cos x, sin x}

Since ex is repeated on the R.H.S. we must try Yp = Axex + Bx + C

Y ′
p = Aex + Axex + B ⇒ Y ′′

p = 2Aex + Axex ⇒ Y ′′′
p = 3Aex + Axex

⇒ 3Aex + Axex − 2Aex − Axex + Aex + Axex + B − Axex −Bx− C = 4ex + x

⇒ 2A = 4 ⇒ A = 2, B = −1, C = −1

⇒ Yp = 2xex − x− 1

4.Consider the non-homogeneous linear differential equation (x−1)
d2y

d2x
−x

dy

dx
+y = 4(x−1)2e−x,

for x > 1,

a)Check that y1 = ex is a solution to the associated homogeneous equation. Using this
solution find a second solution y2 so that y1 and y2 are linearly independent.

Solution:

(x− 1)ex − xex + ex − xex − ex − xex + ex = 0

y2 = c(x)ex y′2 = c′ex + cex y′′2 = 2c′ex + cex + c′′ex put these into the homogenous
equation and get;

(x− 1)c′′ +(x− 2)c′ = 0 ⇒ c′′

c′
=

1

x− 1
− 1 ⇒ ln c′ = ln |x− 1| −x ⇒ c′ = (x− 1)e−x

⇒ c(x) = (1− x)e−x + ex = −xe−x ⇒ y2 = −xe−xex = −x

i.e. y2 = x is an another fundamental solution W (x, ex) = (x − 1)ex nonzero for
x > 1.

b) Now solve the non-homogeneous equation.



Solution:

Use Variation of Parameters. y = c1(x)ex + c2(x)x

y′ = c′1e
x + c1e

x + c′2x + c2 and we set c′1e
x + c′2x + c2 = 0.....(*)

y′′ = c′1e
x+c1e

x+c′2 ⇒ (x−1)(c′1e
x+c1e

x+c′2)−x(c1e
x+c2)+c1e

x+c2x = 4(x−1)e−x

⇒ (x− 1)exc′1 + (x− 1)c′2 = 4(x− 1)e−x ⇒ c′1e
x + c′2 = 4(x− 1)e−x.....(**)

Solve (*) and (**): c′1 = 4xe−2x ⇒ c1 = −(2x + 1)e−2x

c′2 = −ex

x
c′1 = −4e−x ⇒ c2 = 4e−x

Yp = c1e
x + c2x = −(2x + 1)e−x + 4xe−x = (2x− 1)e−x

G.S.:y = c1e
x + c2x + (2x− 1)e−x
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1. Let 2xyy
′
+ (1 + x)y2 = ex, x > 0

i) By suitable change of variable transform this equation to a linear first order equation.

ii) Solve the equation

Solution:

i) (2yy
′
)︸ ︷︷ ︸ x + (1 + x) y2︸︷︷︸ = ex

Let y2 = u ⇒ 2yy
′
= u

′

So u
′
x + (1 + x)u = ex is a linear 1st order equation.

ii)

u
′
+ (

1 + x

x
) =

1

x
ex

µ = IF = exp[

∫
(

1

x + 1
) dx] = exp[ln(x) + x] = x ex

x ex u
′
+ (

1

x
+ 1) x ex u = x ex (

1

x
ex)

⇒ x ex u
′
+ (1 + x) ex u = e2x

⇒ d

dx
(x exu) = e2x

(x exu) =
1

2
e2x + c, c ∈ R

u =
1

2x
ex +

c

x
e−x, c ∈ R

⇒ u =
ex + c

′
e−x

2x
, c

′ ∈ R

Hence from y2 = u

⇒ y2 =
ex + c

′
e−x

2x
, c

′ ∈ R

is the implicit solution of the given differential equation.



2. Consider the Initial Value Problem: y′ = x
y+1

, y(0) = 0

i) Discuss the existence of the solution of the Initial Value Problem given above; if there
exists a solution how is the existence guaranteed?

(ii) Solve, if possible, the given Initial Value Problem explicitly.

Solution:

i) y′ =
x

y + 1
= f(x, y), y(0) = 0.

f(x, y) =
x

y + 1
and

∂(f)

∂(y)
=

−x

(y + 1)2
are continuous in an open rectangular re-

gion R if R does not contain y = −1 line. So, for such region R involving the
point (0, 0) we can find an open interval I with 0 ∈ I. So, the IVP has a unique
solution in I.

ii) Given DE, (y + 1)dy = xdx and hence
y2

2
+ y =

x2

2
+ c.

y(0) = 0⇒ c = 0,
therefore y2 + 2y = x2 is the implicit solution of the IVP.
For the explicit solution,

y2 + 2y − x2 = 0

y =
−2±

√
4 + 4x2

2
= −1±

√
1 + x2

For y(0) = 0 to hold, take
y = −1 +

√
1 + x2.



3. Given that the differential equation y′′ + (4x)y′ + q(x)y = 0 has two solutions of the form
y1 = u(x), y2 = xu(x) where u(0) = 1, determine both u(x) and q(x) explicitly.

Solution:

y1, y2 are linearly independent ⇒ W (y1, y2) =

∣∣∣∣u xu
u′ u + xu′

∣∣∣∣ = u2 6= 0

By Abel’s theorem

u2 = Cexp[−
∫

4xdx]
= Cexp(−2x2).

For u(0) = 1⇒ C = 1.

So, u2(x) = e−2x2

u(x) = e−x2

Hence u′(x) = (−2x)e−x2
and u′′(x) = (−2 + 4x2)e−x2

.
Therefore, from DE
(−2 + 4x2)e−x2

+ 4x(−2x)e−x2
+ q(x)e−x2

= 0
−2 + 4x2 − 8x2 + q(x) = 0

q(x) = 4x2 + 2



4. Given that y1(t = t and y1(t = t−3 are solutions to homogeneous equation t2y
′′
(t) + 3ty

′
(t)−

3y(t) = 0 find the general solution to t2y
′′
(t)+3ty

′
(t)−3y(t) = 1

t
by using the Variation of Parameters

method.

Solution:

DE: y
′′

+ (3t−1)y
′ − (3t−2)y = t−3.

So g(t) = t−3.

Now yh = c1t + c2t
−3, c1, c2 ∈ R.

Let yp = c1(t)t + c2t
−3t−3 be the particular solution where

c
′

1(t) =

∣∣∣∣ 0 t−3

t−3 −3t−4

∣∣∣∣
W (y1, y2)(t)

c
′

2(t) =

∣∣∣∣ t 0
1 t−3

∣∣∣∣
W (y1, y2)(t)

where

W (y1, y2)(t) =

∣∣∣∣ t t−3

1 −3t−4

∣∣∣∣ = −4t−3

⇒ c
′

1(t) =
−t−6

−4t−3
=

1

4
t−3 ⇒ c1(t) =

1

8
t−2

& c
′

2(t) =
t−2

−4t−3
= −1

4
t ⇒ c2(t) = − t2

8

Hence

yp = − t−2

8
(t)t− t2

8
t−3t−3 = −1

4
t−1

Thus the general solution

y(t) = c1t + c2t
−3 +−1

4
t−1, c1, c2 ∈ R



5. Solve implicitly; (x2 ln x)dy + (xy− 1)dx = 0, x > 0

Solution:

(xy− 1)dx + (x2 ln x)dy = 0
M = xy− 1 ⇒ My = x & N = x2 ln x ⇒ Nx = 2x ln x + x
My 6= Nx ⇒ Equation is not exact.

My −Nx

N
= −2

x
=⇒ IF = exp

[
−

∫
2

x
dx

]
= x−2

Then we get (y

x
− x−2

)
dx + (ln x)dy = 0

P =
(y

x
− x−2

)
& Q = (ln x) ⇒ Py =

1

x
= Qx ⇒ New equation is exact

There is

u = u (x, y) s. t.
∂u

∂x
= P,

∂u

∂y
= Q

∂u

∂y
= ln x ⇒ u (x, y) =

∫
(ln x)dy = y ln x + h(x)

So
∂u

∂x
=

y

x
+ h

′
(x) =

y

x
− x−2

h
′
(x) = −x−2

h(x) =
1

x
+ k

⇒ u (x, y) = y ln x +
1

x
+ k

As u (x, y) = constant gives the implicit solution

y ln x +
1

x
= c, c ∈ R

is the implicit solution.



BU Department of Mathematics
Math 202 Differential Equations

Date: April 9, 2004 Full Name :
Time: 18:10-19:25 Math 202 Number :

Student ID :

Spring 2004 First Midterm - Solution Key

IMPORTANT
1. Write your name, surname on top of each page. 2. The exam consists of 4 questions some of which have more than
one part. 3. Read the questions carefully and write your answers neatly under the corresponding questions. 4. Show all
your work. Correct answers without sufficient explanation might not get full credit. 5. Calculators are not allowed.

Q1 Q2 Q3 Q4 total

20 pts 25 pts 30 pts 25 pts 100 pts

1.)[20] Solve (sec2 y)y′ +
tan y

1 + x
=

1√
1 + x

by using the substitution u = tan y.

Solution:

Using the given substitution we get:

u = tan y ⇒ u′ = (sec2 y)y′.

The transformed DE for u reads:

u′ +
u

1 + x
=

1√
1 + x

,

which obviously linear (but not separable). Hence we have to find an integrating factor
µ(x) by:

µ(x) = exp

[∫
dx

1 + x

]
= 1 + x.

Multiplying the equation by this µ(x) factor we get (1 + x)u′ + u =
√

1 + x, so that the
left hand side becomes a total derivative:

[(1 + x)u]′ =
√

1 + x ⇒ (1 + x)u =
2

3
(1 + x)3/2 + c.

Leaving u alone on the left we get the u function to be:

u =
2

3

√
1 + x +

c

1 + x
,

which then implies after going back to y:

y = arctan

(
2

3

√
1 + x +

c

1 + x

)
.



2.) Consider the differential equation y(4) + 6y′′′ + 9y′′ = f(t).
(a)[15] Find the general solution of this differential equation when f(t) = 50e2t + 18.

Solution:

We first need to find the complementary solution. This is a constant coefficient linear
DE, so we can use the characteristic equation: r4 + 6r3 + 9r2 = 0 which is equivalent to
r2(r+3)2 = 0. We have the roots to be r = 0,−3 both double. Hence the complementary
solution is:

yc = c1 + c2t + c3e
−3t + c4te

−3t.

(Alternatively: you can set y′′ = u and reduce the order by 2, i.e. solve u′′+ 6u′+ 9u = 0
then find y after two integrations.)

Now we can look for a particular solution and the most appropriate way to do this is the
method of undetermined coefficients. So set yp = Ae2t + B. But B ∈ yc so multiply by
t. Still Bt ∈ yc. Multiply once more by t. Now Bt2 is not a complementary solution.
Then the correct form is yp = Ae2t + Bt2. Compute derivatives to substitute in the DE:
y′p = 2Ae2t + 2Bt, y′′p = 4Ae2t + 2B, y′′′p = 8Ae2t and y(4) = 16e2t. After plugging into the
DE we get:

16Ae2t + 48Ae2t + 9(4Ae2t + 2B) = 50e2t + 18.

Comparing the coefficients yields: A = 1/2 and B = 1. Hence the general solution is:

y = yc +
e2t

2
+ t2.

(b)[10] Suppose that the motion of a particle is described by the differential equation above with
f(t) = 0. Suppose furthermore that both the initial (t = 0) position and initial velocity of the
particle are zero, and the initial acceleration is 6 m/sec2. If the velocity becomes constantly 1 m/sec
in large time, find the position of this particle at time t = 1.

Solution:

Since f(t) = 0 we need only the complementary solution found above. From the problem
we understand that the following conditions are attached to this solution: y(0) = 0,
y′(0) = 0, y′′(0) = 6 and the large time behaviour lim

t→∞
y′(t) = 1. Now apply these

conditions to y = c1 + c2t + c3e
−3t + c4te

−3t. First compute the necessary derivatives:
y′ = c2 − 3c3e

−3t + c4e
−3t − 3tc4e

−3t and y′′ = 9c3e
−3t − 6c4e

−3t + 9tc4e
−3t. Then the

conditions imply:
y(0) = 0 ⇒ c1 + c3 = 0
y′(0) = 0 ⇒ c2 − 3c3 + c4 = 0
y′′(0) = 6 ⇒ 9c3 − 6c4 = 6

lim
t→∞

y′(t) = 1 ⇒ c2 = 1.

With this found c2 there remain three equations for three unknowns which are easily
solved to find c1 = 0, c3 = 0 and c4 = −1. Then the unique solution describing the
dynamics of the particle is:

y = t− te−3t.

Hence the position at t = 1 is simply: y(1) = 1− e−3 m.



3.) Given x2y′′− x(x + 2)y′ + (x + 2)y = 2x3 for x > 0 and y1 = x is a solution of the corresponding
homogeneous differential equation.
(a)[12] Find a second linearly independent solution y2 of the homogeneous differential equation.

Solution:

The corresponding homogeneous equation is: x2y′′−x(x+2)y′+(x+2)y = 0 with a given
solution y1 = x. We will apply the reduction of order scheme: let y2 = y1v(x) = xv(x)
and find v(x) from the homogeneous DE. Computing the derivatives: y′2 = v + xv′ and
y′′2 = 2v′ + xv′′ and inserting into the DE we receive:

x2(2v′ + xv′′)− x(x + 2)(v + xv′) + (x + 2)xv = 0.

After the necessary simplification (v terms cancel out obviously) the remaining DE for v
reads: x3v′′ − x3v′ = 0 in which x3 can be cancelled out as x > 0. Hence the final DE is:

v′′ − v′ = 0.

Letting v′ = u we reduce the order by 1 as aimed. This is, we need to solve the easy
DE: u′ = u which is apparently separable. Solving yields u = c1e

x which then entails
v = c1e

x + c2. We can but set c2 = 0 as it gives the previous solution after multiplied by
y1 = x. Hence y2 = xv = c1xex. Since we are seeking a linearly independent solution it
suffices to choose one nonzero c1, so let c1 = 1 and we find:

y2 = xex.

(b)[6] Show that {y1, y2} forms a fundamental set of solutions.

Solution:

We have now y1 = x and y2 = xex. Checking whether {y1, y2} is a fundamental set means
showing their Wroskian W (y1, y2) never vanishes whenever the solutions exist. Thus:

W (y1, y2) =

∣∣∣∣ y1 y2

y′1 y′2

∣∣∣∣ =

∣∣∣∣ x xex

1 xex + ex

∣∣∣∣ = x2ex 6= 0 as x > 0.

Consequently {y1, y2} forms a fundamental set of solutions.



(c)[12] Find a particular solution yp for the nonhomogeneous differential equation.

Solution:

Having obtained two linearly independent solutions of the homogeneous equation we are
now able to find a particular solution yp. The suitable technique is variation of parameters
(note that undetermined coefficients method is not acceptable because given equation is
not constant coefficient). Writing the DE leaving the highest derivative with coefficient
one:

y′′ − (x + 2)

x
y′ +

(x + 2)

x2
y = 2x.

We are now ready to implement the method: let yp = v1y1 + v2y2 = xy1 + xexv2 where v1

and v2 are functions of x. We require the solutions v′1 and v′2 of the following algebraic
equations:

y1v
′
1 + y2v

′
2 = 0

y′1v
′
1 + y′2v

′
2 = 2x

}
⇔

{
xv′1 + xexv′2 = 0

v′1 + (xex + ex)v′2 = 2x

After this point you can use any method (Cramer’s rule or ordinary elimination). Using
the first equation in the second we get:

v′2 = 2e−x ⇒ v2 = −2e−x.

Note that the integration constant may be taken as zero. Using v2 in the first equation
again:

v′1 = −2 ⇒ v1 = −2x.

Creating a particular solution yp by the above recipe:

yp = x(−2x) + xex(−2e−x) = −2x2 − 2x.

It is good but not necessary to observe that −2x part in yp is in fact a complementary
solution. Since we can always add complementary solutions to a particular solution the
above answer is correct. Nonetheless a finer answer would be obtained after removing
this part, namely:

yp = −2x2.



4.) Let f and g be any two solutions of the differential equation:

d

dx

[
p(x)

dy

dx

]
+ q(x)y = 0,

in the interval [a, b], where p(x) is differentiable function that does not vanish in this interval.
(a)[15] Show that p(x)[f(x)g′(x)− g(x)f ′(x)] = k, where k is any constant.

Solution:

Recognizing the quantity f(x)g′(x)− g(x)f ′(x) as the Wroskian of f and g, i.e.:

W (f, g)(x) =

∣∣∣∣ f g
f ′ g′

∣∣∣∣ (x) = f(x)g′(x)− g(x)f ′(x).

The DE, when differentiation is explicitly used, is:

p(x)y′′ + p′(x)y′ + q(x)y = 0.

We now use Abel’s formula to find the Wronskian:

W (f, g)(x) = k exp

[
−

∫
p′(x)

p(x)
dx

]
= k(p(x))−1.

This ends the proof: p(x)W (f, g)(x) = k where k is a constant.

(b)[10] Suppose that f(x) > 0 and g(x) > 0 in [a, b]. Show that if ln(f/g) has a local maximum at
x0 in (a, b), then f and g are linearly dependent.

Solution:

Since f, g > 0 in [a, b] their logarithmic quotient is well defined. ln(f/g) has a local
maximum in the open interval (a, b) means it has vanishing first derivative at x0 ∈ (a, b).
Writing this:

d

dx
ln(f/g)

∣∣∣∣
x=x0

= −f(x0)g
′(x0)− g(x0)f

′(x0)

f(x0)g(x0)
= 0.

But this could only happen if the numerator is zero (note that the denominator is not zero
due to the assumption f, g > 0). We again recognize the quantity in the numerator as
W (f, g)(x0). Thus we have shown that W (f, g)(x0) = 0. Independence requires nonzero
Wronskian at all points. So we conclude that f and g are linearly dependent.

Indeed, from part (a) we know that p(x)W (f, g)(x) = k for all x, being the same constant
for every x. Using this at x0 we get:

p(x0)W (f, g)(x0) = k ⇒ k = 0,

which implies p(x)W (f, g)(x) = 0 for every x ∈ [a, b]. As p(x) never vanishes throughout
this interval, the only possibility is:

W (f, g)(x) = 0, for all x ∈ [a, b],

meaning that W (f, g) is identically zero.
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1. Consider the differential equation (xy − 1)dx+ (x2 − xy)dy = 0.
(a) Show that this is not an exact equation.
(b) Find an integrating factor µ to make it exact.
(c) Multiply the equation by µ on both sides and solve the differential equation.
(d) State conditions on x and y required to make your solution valid.

Solution:

Let M(x, y) = xy − 1 and N(x, y) = x2 − xy. Then ∂
∂y
M = x; ∂

∂x
N = 2x − y. Since

My 6= Nx, the DE is not exact.

We find µ(x, y) such that ∂
∂y

(µM) = ∂
∂x

(µN). We require:

µy(xy − 1) + xµ = µx(x
2 − xy) + (2x− y)µ.

Assuming that µ = µ(x) i.e. µy = 0 we get:

−xµx = µ

which is in accordance with our assumption. Hence we get as an integrating factor, for
example, µ = 1

x
, x 6= 0.

Multiplying both sides by µ, the DE becomes:

(y − 1

x
)dx+ (x− y)dy = 0.

Assume the left hand side equals dψ. Finding ψ gives an implicit expression between x
and y. Since ψx = y− 1

x
, we have ψ = xy− ln|x|+φ(y). Meanwhile, ψy = x−y = x+φy.

So, φ(y) = −y2

2
+ C so that

ψ = xy − ln |x| − y2

2
+ C

and ψ = K gives the desired expression. Here C,K ∈ R.

The solution is valid for arbitrary y and for x 6= 0.

2. Find the general solution of the following homogenous differential equation over (0,∞) given

that y1(t) =
1

t
is a solution:

t2y′′ + 4ty′ + 2y = 0.

Solution:



Let the second solution be given as y2(t) = u(t)y1(t). Insert in the DE to get:

t2(u′′y1 + 2u′y′1 + uy′′1) + 4t(u′y1 + uy′1) + uy1 = 0
→ t2u′′y1 + 2t2u′y′1 + 4tu′y1 = 0
→ tu′′ + 3u′ = 0

→ u′′

u′
= −3

t
→ u′ = Ct−3, (C ∈ R)
→ u(t) = Ct−2 + C1, (C1 ∈ R)

Hence we get y2(t) = t−3 so that the general solution for the DE becomes

y(t) = C1t
−1 + C2t

−3; C1, C2 ∈ R.

3. Using the method of undetermined coefficients, solve the following initial value problem:

y′′ + 2y′ + 2y = 2 + cos 2t, y(0) = 1, y′(0) = 0.

Solution:

Consider the corresponding homogenous equation y′′ + 2y′ + 2y = 0. The natural fre-
quencies satisfy: r2 +2r+2 = 0. Therefore r1,2 = −1±

√
2 and the homogenous solution

is
yh = et(C1 cos

√
2t+ C2 sin

√
2t).

As for the particular solution, let yp = D1 +D2 cos 2t+D3 sin 2t. Inserting in the DE we
get:

−4D2 cos 2t− 4D3 sin 2t+ 4(−D2 sin 2t+D3 cos 2t) + 2(D1 +D2 cos 2t+D3 sin 2t) = 2 + cos 2t
→ D1 = 1; −2D2 + 4D3 = 1; −4D2 − 2D3 = 0

→ D1 = 1; D2 = − 1

10
; D3 =

1

5
.

The general solution is

y = et(C1 cos
√

2t+ C2 sin
√

2t) + 1− 1

10
cos 2t+

1

5
sin 2t.

Now, since y(0) = 1 = C1 + 9
10

, C1 = − 9
10

. Similarly, since y′(0) = 0 = C1 +
√

2C2 + 2
5
,

C2 = 1
2
√

2
.

4. Determine the interval(s) in which the solutions exist for the following nonhomogenous differential
equation:

d2y

dx2
+ 4y = sec2 2x.

Now find the general solution of the differential equation in one of the intervals determined above.

Solution:

Solution exists whenever sec2 2x is defined, i.e. whenever x 6= π
4

+ kπ, k ∈ Z.

Let us restrict ourselves to the interval (−π
4
, π

4
). The homogenous solution is C1 cos 2x+

C2 sin 2x. Vary the parameters: assume that the particular solution is of the form:



yp = u(x) cos 2x + v(x) sin 2x. Then y′p = u′ cos 2x + v′ sin 2x − 2u sin 2x + 2v cos 2x. As
usual we let:

u′ cos 2x+ v′ sin 2x = 0. (1)

So we have y′′p = −4u cos 2x− 4v sin 2x− 2u′ sin 2x + 2v′ cos 2x. Inserting in the DE, we
obtain:

−2u′ sin 2x+ 2v′ cos 2x = sec2 2x. (2)

Solving (1) and (2) simultaneously by Cramer’s rule, we get:

u′ = −1

2
sec2 2x sin 2x = −1

2
sec 2x tan 2x; v′ =

1

2
sec2 2x cos 2x =

1

2
sec 2x.

Hence,

u = −1

4
sec 2x+ C1; v =

1

4
ln | sec 2x+ tan 2x|+ C2.

5. (a) Find a second order differential equation with constant coefficients whose general solution is
in the form

y(t) = c1e
−t + c2e

2t + 2te−t + 5

where c1, c2 are arbitrary real numbers.

Solution:

The homogenous equation y′′ − y′ − 2y = 0 has general solution as the first two terms of
the given solution above. We require that 2te−t + 5 is a particular solution. To get the
first term here, the nonhomogenous equation must have C1e

−t on the right hand side and
for the second term, there must be C2 on the right hand side. So the equation is

y′′ − y′ − 2y = C1e
−t + C2.

Then inserting the particular solution we obtain C1 = −3 and C2 = −10.

(b) Consider the differential equation y′′′ + ety′′ + (sin t)2y′ + 4y = 0. Let ψ(t) be a solution of the
equation and let ψ(1) = 0, ψ′(1) = 0, ψ′′(1) = 0. Show that ψ(2) 6= 1.

Solution:

First observe that ψ(t) is the solution of the initial value problem

y′′′ + ety′′ + (sin t)2y′ + 4y = 0; y(1) = 0, y′(1) = 0, y′′(1) = 0.

The zero function y(t) = 0 is also a solution of this initial value problem. Since et, (sin t)2

and 4 are continuous functions, this initial value problem must have a unique solution by
the Theorem. Hence, ψ(t) is the zero function and, of course, ψ(2) 6= 1 as required.
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1. (a) Solve the initial value problem: y
′
= 2(2t− y), y(0) = 1

Solution:

Equation is linear: y
′
+ 2y = 4t; (e2ty)

′
= 4te2t

y(t) = 2t− 1 + ce−2t is the general solution.

y(0) = −1 + c = 1 ⇒ c = 2

y(t) = 2t− 1 + 2e−2t is the unique solution of the initial value problem.

(b) Solve: 2tyy
′
= 9t2 + 3y2

Solution:

Equation is homogeneous: Let y = tv(t)

⇒ 2tvv
′
= 9 + v2 is a separable equation.

2vdv

9 + v2
=

1

t
dt

ln(9 + v2) = ln |t|+ c0 ⇒ 9 + v2 = c|t| ⇒ v =
√
c|t| − 9 (c|t| ≥ 0)

Therefore, y = t
√
c|t| − 9



2. Given the differential equation: y ln ydx+ (x− ln y)dy = 0,
(a) Show that it is not exact.
(b) Find an integrating factor and a one-parameter family of solutions.

Solution:

(a) M = y ln y, N = x− ln y

My = ln y + 1 6= Nx = 1 ⇒ Equation is not exact.

(b) Either by inspection or by solving (µM)y = (µN)x for µ = µ(y) one finds the integrating
factor

µ(y) =
1

y

Therefore,

ln ydx+

(
x

y
− ln y

y

)
dy = 0

⇒ ψx = ln y, ψy =
x

y
− ln y

y

⇒ ψx = ln y, ⇒ ψ = x ln y + f(y)

and ψy =
x

y
− ln y

y
⇒ f(

′
y) = − ln y

y

Integration by parts gives ∫
ln y

y
dy =

1

2
(ln y)2

⇒ ψ = x ln y − 1

2
(ln y)2

Solutions: ψ(x, y) = c

⇒ x ln y − 1

2
(ln y)2 = c



3. (a) Solve the initial value problem: y′′ + 4y′ + 5y = 10, y(0) = 0, y
′
(0) = 0.

Solution:

The characteristic equation: r2 + 4r + 5 = 0 gives the roots r1,2 = −2± i

⇒ yh = (c1 cos t+ c2 sin t)e−2t

yp = 2

y = yh + yp ⇒ y = (c1 cos t+ c2 sin t)e−2t + 2 is the general solution.

y(0) = 0 ⇒ c1 = −2

y
′
(0) = 0 ⇒ c2 = 2c1 = −4

Therefore,
y(t) = 2(1− e−2t cos t− 2e−2t sin t)

(b) Find a homogeneous, second order linear equation which admits{
e2t

t
,
e−2t

t

}
,

as a fundamental set of solutions for t > 0.

Solution:

Let z1 = ty1 = e2t, z2 = ty2 = e−2t

{z1, z2} is a fundamental set for

z
′′ − 4z = 0 and z = ty.

Hence it follows that

ty
′′

+ 2y
′ − 4ty = 0



4. (a) Find the general solution of:

ty′′ + (t− 1)y′ − y = 0,

given that y = t− 1 is a solution of this equation.

Solution:
y = e−t is also a solution!

{t− 1, e−t} is a linearly independent set.

Therefore general solution is

y = c1e
−t + c2(t− 1), c1, c2 ∈ R

(b) Find the general solution of the forth order equation

y(iv) − 8y
′′

+ 16y = 0.

Solution:

Characteristic equation: r4 − 8r2 + 16 = 0

⇒ (r2 − 4)2 = 0 ⇒ r1 = r2 = 2 and r3 = r4 = −2

⇒ y(t) = (c1 + c2t)e
2t + (c3 + c4t)e

−2t c1, c2, c3, c4 ∈ R



BU Department of Mathematics
Math 202 Differential Equations

Summer 2001 First Midterm
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1. Find one-parameter family of solutions of the differential equation:
y′ = 1 + x− (1 + 2x)y + xy2

Solution:

This is a Ricatti eqn., y = 1 is a solution.

Let y = 1 +
1

z
DE ⇒ z′ − z = −x (a linear DE)
Integrating factor µ = e−x

(e−xz)′ = −xe−x, z = 1 + x+ cex

y = 1 +
1

1 + x+ cex
(c ∈ R)

2. a) Show that the equation: (x2+y2) dx+2xy dy = 0 is exact and find a one-parameter family
of solutions.
Solution:

M = x2 + y2, N = 2xy
⇒ My = 2y = Nx

⇒ DE is exact

Let ψx = x2 + y2 ⇒ ψ =
1

3
x3 + xy2 + h(y)

⇒ ψy = 2xy + h′(y) = 2xy
⇒ h′(y) = 0

Thus ψ(x, y) =
1

3
x3 + xy2 + c0, (c0 ∈ R)

and a one-parameter family of solutions is

ψ(x, y) =
1

3
x3 + xy2 = c



b) Find at least three distinct, real solutions to the initial value problem:
y′ = 3x(y − 2)1/3, y(0) = 2, on (−∞,∞) and discuss why the solution is not unique.
Solution:

Obviously, y = 2 is a solution and it obeys the initial condition.
DE is separable. Integration gives
(y − 2)2/3 = x2 + c, y(0) = 2
⇒ c = 0 ⇒ y − 2 = ±x3

y = 2 + x3

y = 2− x3

y = 2

all solve the above initial value problem

Let y′ = f(x, y) = 3x(y − 2)1/3

⇒ ∂f

∂y
= x(y − 2)−2/3 We see that

∂f

∂y
is not continuous at (0, 2)

So uniqueness theorem does not apply.

3. a) Find the general solution of: y′′ − 4y′ + 13y = 0
Solution:

Characteristic equation: r2 − 4r + 13 = 0
⇒ r1,2 = 2± 3i (complex roots)
{e2x cos(3x), e2x sin(3x)} is a fundamental set of solutions
General solution:
y = e2x(c1 cos(3x) + c2 sin(3x)) c1, c2 ∈ R

b) A particular solution of (1− x)y′′ + xy′ − y = 5 is y = −5
Find the general solution.
Solution:

General solution: y = yh + yp with yp = −5
For yh we need a fundamental set of solutions of (1− x)y′′ + xy′ − y = 0
By inspection one can see y1 = x, y2 = ex

are two lin. indep. homog. solns.
Thus yh = c1x+ c2e

x, c1, c2 ∈ R
⇒ y = c1x+ c2e

x − 5 is the general soln.
(Notify only y1 = x and letting y = xv, w = v′

gives (x− x2)w′ + (x2 − 2x+ 2)w = 0

⇒ w =
x− 1

x2
ex ⇒ v =

1

x
ex + const

⇒ y2 = ex The same answer could be obtained by using Abel’s formula)

4. a) Suppose that on an open interval I the functions p1(x), p2(x) and q1(x), q2(x) are contin-
uous and the equations: y′′ + p1y

′ + q1y = 0, y′′ + p2y
′ + q2y = 0 have the same solutions.

Show that on the interval I p1(x) = p2(x) and q1(x) = q2(x)
Solution:

Take a fundamental set of solns. {y1, y2} since this solves both eqns., The Wron-
skien must be the same:
W (x) = ce−

R
p1(x) dx = ce−

R
p2(x) dx

⇒ p1(x) = p2(x) on I using some y(x) and this information, The difference of
the equations then give [q1(x)− q2(x)]y = 0



Since y1(x) and y2(x) cannot vanish at the same point in I, it follows that
q1(x) = q2(x) on I

b) Solve the initial value problem:
y′′ + 4y′ + 4y = 0, y(0) = 1, y′(0) = 0 Solution:

Characteristic eqn.: r2 + 4r + 4 = (r + 2)2 = 0
r1 = r2 = −2 ⇒ General soln. is y = c1e

−2x + c2xe
−2x

y(0) = c1 = 1
y′(0) = c2 − 2c1 = 0 ⇒ c2 = 2
Hence the unique solution to the initial value problem is y = e−2x(1 + 2x).
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1. Show that the differential equation

2xy3dx+ (3x2y2 + x2y3 + 1)dy = 0,

is not exact. Find an integrating factor and a one-parameter family of solutions for this
equation.

Solution:

M = 2xy3, N = 3x2y2 + x2y3 + 1

My = 6xy2, Nx = 6xy2 + 2xy3 ⇒My 6= Nx;

DE is not exact.

Nx −My = 2xy3 = M ⇒ An integrating factor µ = µ(y) exists:

µ′

µ
=
Nx −My

M
= 1 ⇒ µ(y) = ey

Let ψ = ψ(x, y) be such that ψx = 2xy3ey, ψy = (3x2y2 + x2y3 + 1)ey

ψx = 2xy3ey ⇒ ψ = x2y3ey + f(y)

ψy = ey(x2y3 + 3x2y2) + f ′(y) ⇒ f ′(y) = ey, f(y) = ey + const

ψ(x, y) = (x
2

y3 + 1)ey; ψ(x, y) = c, c ∈ R,

gives us a one-parameter family of solutions:

(1 + x2y3)ey = c



2. (a) Solve the initial value problem: 2ty′ − y = t4y−3, (t > 0), y(2) = 2.
Is the solution unique? Justify your answer.

Solution:

Obviously, y = t is the solution of the IVP. This is a Bernoulli eqn.

Let f(t, y) =
1

2t
y +

1

2
t3y−3.

y′ = f(t, y), fy = 1
2t
− 3

2
t3y4 and around the point (2, 2) in the ty-plane there is

a region (t > 0, y > 0) in which f and fy are continuous.

Therefore, this must be the unique solution of the IVP.

(Letting u = y4 gives u′ − 2
t
u = 2t3, u(2) = 16, u(t) = t4 + ct2, c = 0,

u(t) = t4, unique.)

(b) Let y1, y2, y3 be three solutions of a normal, first-order linear differential equation on an
interval I. Let t0 ∈ I such that y1(t0) 6= y3(t0). Show that in I

y1(t)− y2(t)

y1(t)− y3(t)
=
y1(t0)− y2(t0)

y1(t0)− y3(t0)

Solution:

Consider y′ + p(t)y = g(t). The difference of any two solutions is

a homogeneous solution:

(yi − yj)
′ = −p(t)(yi − yj),

yi − yj = [yi(t0)− yj(t0)]exp(−
∫ t

t0

p(s)ds), t0 ∈ I

⇒ y1(t)− y2(t)

y1(t)− y3(t)
=
y1(t0)− y2(t0)

y1(t0)− y3(t0)



3. (a) Find the general solution of 4y′′ + 20y′ + 61y = 0.

Solution:

Characteristic equation: 4r2 + 20r + 61 = 0 and the roots are complex:

r1 = −5

2
+ 3i, r2 = r1

⇒ {e−5t/2cos3t, e−5t/2sin3t} is a fundamental set of solutions.

⇒ y = e−5t/2[(c1cos3t+ c2sin3t)]

(b) Solve the initial value problem: y′′ − 18y′ + 81y = 0, y(0) = 2, y′(0) = 25.

Solution:

Characteristic equation is now: r2 − 18r + 81 = (r − 9)2 = 0

and we have a repeated real root: r1 = r2 = 9.

⇒ {e9t, te9t} is a fundamental set.

General solution is y = e9t[c1 + tc2], c1, c2 ∈ R.

y(0) = c1 = 2,

y′ = e9t[9c1 + (1 + 9t)c2], y
′(0) = 9c1 + c2 = 18 + c2 = 25 ⇒ c2 = 7.

Therefore, y = e9t(2+7t) is the unique solution of the IVP.



4. (a) Find the general solution of y′′ + 3y′ − 4y = 18e2t

Solution:

Characteristic eqn. : r2 + 3r − 4 = (r − 1)(r + 4) = 0

⇒ r1 = 1, r2 = −4

⇒ {et, e−4t} is a fundamental set of (homogeneous) solutions.

yH = c1e
t + c2e

−4t, (c1, c2 ∈ R)

Let yP = Ae2t. DE ⇒ 6A = 18, A = 3.

Hence the general solution is:

y = yH + yP = c1e
t + c2e

−4t + 3e2t.

(b) Let u(t), v(t) be differentiable functions on an interval I and suppose that u(t) never
vanishes in I. Let W [u(t), v(t)] be the Wronskian. Prove that if W = 0 in I, then u(t)
and v(t) are linearly dependent on I.

Solution:

W =

∣∣∣∣ u v
u′ v′

∣∣∣∣ = uv′ − vu′.

Consider
W

u2
=
v′

u
− vu′

u2
=

d

dt

(v
u

)
Since u(t) 6= 0, t ∈ I, W = 0

⇒ d

dt

(v
u

)
= 0 ⇒ v

u
= c, c ∈ R

v = cu and therefore, u and v are linearly dependent on I.
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1. Determine the constants a and b so that µ(x, y) = xayb is an integrating factor for the equation

ydx− (x+ x6)dy = 0

Find a one-parameter family of solutions of this equation.(All integrals that may arise should
be evaluated.)

Solution:

(µM)y = (µN)x : (xayb+1)y = −(xa+1yb + xa+6yb)x

⇒ (b+ 1)xayb = −yb[(a+ 1)xa + (a+ b)xa+5]

⇒ a+ 6 = 0, a+ 1 = −(b+ 1) ⇒ a = −6, b = 4

µ(x, y) = x−6y4 Multiplying the DE by µ(x, y) :

x−6y5dx− (x−5y4 + y4)dy = 0

⇒ ψx = x−6y5, ψy = −(x−5 + 1)y4

⇒ ψ(x, y) = −1

5
x−5y5 + f(y), f ′(y) = −y4

ψ(x, y) = −1

5
(x−5y5 + y5)

A one-parameter family of solutions is given by ψ(x, y) = const, i.e. by

y5 =
cx5

1 + x5
, c ∈ R.



2. a) Solve: t2y′ + 2y = 2e1/ty1/2 for t > 0.

Solution:

y = 0 is a solution. Let y 6= 0, u(t) = y1/2, u′ =
1

2
y−1/2y′

DE ⇒ 2t2uu′ + 2u2 = 2e1/tu⇒ t2u′ + u = e1/t, linear.

u′ +
1

t2
u =

1

t2
e1/t Integrating factor: µ = e−1/t

(e−1/tu)′ =
1

t2
, e−1/tu = c− 1

t
, c ∈ R

u = e1/t(c− 1

t
), y(t) = u2 = e2/t(c− 1

t
)2

b) Solve the initial value problem: y′ − ty2 = 2y2, y(0) = 1 and prove that the solution
attains its minimum value at t = −2.

Solution:

DE separable:
1

y2
y′ = 2 + t, (y 6= 0)

⇒ −1

y
=

1

2
t2 + 2t+ c, y(0) = 1 ⇒ c = −1

1

y
= 1− 1

2
t2 − 2t, y(t) = (1− 1

2
t2 − 2t)−1

For a minimum at t = t0, y
′(t0) = 0, y′′(t0) > 0

DE ⇒ y′ = 0 iff t+ 2 = 0, t = −2

y′′ = (2 + t)2yy′ + y2, y′′(−2) = y2(−2) > 0

Therefore, the solution attains its minimum value at t = −2. y(−2) =
1

3
.



3. a) Find the general solution of y′′ − 8y′ + 16y = 2t.

Solution:

y = yh +yp, yh :Characteristic equation: r2−8r+16 = (r−4)2 = 0, r1 = r2 = 4

{e4t, te4t} is a fundamental set. yh = e4t(c1 + c2), c1, c2 ∈ R

For yp let yp = A+Bt ⇒ yp
′ = B, yp

′′ = 0

DE ⇒ −8B + 16A+ 16Bt = 2t ⇒ 2A = B, B =
1

8

yp =
1

16
+

1

8
t yp = e4t(c1 + tc2) +

1

16
(1 + 2t)

b) Solve the initial value problem: y′′ + 6y′ + 10y = 0, y(0) = 2, y′(0) = 1

Solution:

Characteristic equation: r2 + 6r + 10 = 0, r1,2 =
−6±

√
36− 40

2

r1 = −3 + i, r2 = −3− i = r1 ⇒ {e−3tsint, e−3tcost} is a fundamental set

of solutions.

y(t) = e−3t(c1cost+ c2sint), (c1, c2 ∈ R), (general solution)

y(0) = c1 = 2, y′(t) = −3y(t) + e−3t(−c1sint+ c2cost)

y′(0) = −6 + c2 = 1 ⇒ c2 = 7

Hence the unique solution of the IVP is y(t) = e−3t(2cost+ 7sint)



4. a) Find a second order, homogeneous linear differential equation which admits {t, e2t} as a

fundamental set of solutions.

Solution:

DE: y′′ + p(t)y′ + q(t)y = 0

y = t ⇒ p+ tq = 0 and y = e2t ⇒ 4 + 2p+ q = 0

⇒
[

1 t
2 1

] [
p
q

]
=

[
0
−4

]

p(t) =

∣∣∣∣ 0 t
−4 1

∣∣∣∣∣∣∣∣ 1 t
2 1

∣∣∣∣ =
4t

1− 2t
, q(t) =

∣∣∣∣ 1 0
2 −4

∣∣∣∣∣∣∣∣ 1 t
2 1

∣∣∣∣ =
−4

1− 2t
(t 6= 1

2
)

Therefore,

y′′ +
4t

1− 2t
y′ − 4

1− 2t
y = 0; (2t− 1)y′′ − 4ty′ + 4y = 0

b) Consider the differential equation (t2 − 4)y′′ + 4ty′ + 2y = 0 for −2 < t < 2.

Given that y1 =
1

t− 2
is a solution, find the general solution of this equation.

Solution:

Can use Abel’s formula: y1y
′
2 − y2y

′
1 = ce−

R
p(t)dt

p(t) =
4t

t2 − 4
;

1

t− 2
y′2 +

1

(t− 2)2
y2 =

c

(t+ 2)2

⇒ (t− 2)y′2 + y2 =
c

(t+ 2)2
; [(t− 2)y2]

′ =
c

(t+ 2)2

(t− 2)y2 =
−c
t+ 2

+ constant. (Let constant = 0)

y2 =
−c
t2 − 4

=
c

4
(

1

t+ 2
− 1

t− 2
)

Thus identify y2 =
1

t+ 2
. (Equivalently, y2 =

1

t2 − 4
)

General solution y(t) =
c1
t− 2

+
c2
t+ 2

.
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1. Using Abel’s Theorem and the fact that y1 =
1

t+ 1
is a particular solution of the differential

equation, solve the initial value problem: (t2 − 1)y′′ + 4ty′ + 2y = 0, y(0) = −5, y′(0) = 1.
What is the interval of validity?
Solution:

y1y
′
2 − y2y

′
1 = ce−

R
p(t) dt, p(t) =

4t

t2 − 1
choose c = 1

1

t+ 1
y′2 +

1

(t+ 1)2
y2 =

1

(t2 − 1)2
⇒ (t+ 1)y′2 + y2 =

(t+ 1)2

(t2 − 1)2

⇒ ((t+ 1)y2)
′ =

1

(t− 1)2

⇒ (t+ 1)y2 = − 1

t− 1
+ k, k ∈ R

⇒ y2 =
1

t− 1
[or, equivalently, y2 =

1

t2 − 1
]

Hence the general solution is

y(t) =
c1
t+ 1

+
c2
t− 1

(t 6= ±1)

⇒ y′(t) =
−c1

(t+ 1)2
− c2

(t− 1)2

⇒ y(0) = c1 − c2 = −5, ⇒ y′(0) = −c1 − c2 = 1
⇒ c1 = −3, c2 = 2

⇒ y(t) =
2

t− 1
− 3

t+ 1

The interval of validity is −1 < t < 1

2. a) Show that (3x2y2 + 6xy3)dx+ (2x3y + 9x2y2)dy = 0 is exact
Solution:

Let M(x, y) = 3x2y2 + 6xy3, N(x, y) = 2x3y + 9x2y2

DE is exact iff My = Nx

My = 6x2y + 18xy2

Nx = 6x2y + 18xy2

⇒ My = Nx

b) Find a one-parameter family of solutions of y′ = −3xy + 6y2

2x2 + 9xy
.

Solution:



If we multiply the numerator and the denominator of the RHS by xy
We get the DE of part (a).
Hence µ(x, y) = xy is an integrating factor of the DE.
Let ψ(x, y) be such that
ψx = 3x2y2 + 6xy3, ψy = 2x3y + 9x2y2

Integrate ψx

ψ(x, y) = x3y2 + 3x2y3 + f(y).
Then ψy = 2x3y + 9x2y2 + f ′(y) = 2x3y + 9x2y2

⇒ f ′(y) = 0
A one-parameter family of solutions is therefore

ψ(x, y) = c, c ∈ R

i.e.
x3y2 + 3x2y3 = c

3. Determine the solution of the following differential equations:

a) y′′ − 4y′ + 13y = 0
Solution:

y = ert

⇒ r2 − 4r + 13 = 0 (characteristic eqn.)

⇒ r1,2 =
4±

√
16− 52

2
= 2± 3i

⇒ {e2t cos(3t), e2t sin(3t)} is a fundamental set of solns.
⇒ Gen. soln.:y(t) = e2t(c1 cos(3t) + c2 sin(3t)) (c1, c2 ∈ R)

b) y′′ − y′ − 6y = 8e2t − 5e3t

Solution:

Gen. Soln. is of the form y = yh + yp

yh : r2 − r − 6 = 0 = (r + 2)(r − 3) = 0
⇒ {e−2t, e3t} is a fundamental set of homog. solns.
⇒ yh = c1e

−2t + c2e
3t

Let yp = Ae2t +Bte3t

⇒ y′p = 2Ae2t +Be3t + 3Bte3t

⇒ y′′p = 4Ae2t + 6Be3t + 9Bte3t

So y′′p − y′p − 6yp = −4Ae2t + 5Be3t = 8e2t − 5e3t

⇒ A = −2, B = −1, yp = −2e2t − te3t

⇒ y = yh + yp = c1e
−2t + c2e

3t − 2e2t − te3t



4. a) Prove that the change of variable v = y′/y reduces the second-order homogeneous linear
differential equation y′′+p(t)y′+q(t)y = 0 to the Riccati equation v′+v2+p(t)v+q(t) = 0.
Find the general solution of y′′ − y = 0 by solving the associated Riccati equation. (No
credit will be given for other approaches)
Solution:

v′ =
y′′

y
− (y′)2

y2
=
y′′

y
− v2

⇒ y′′ = y(v′ + v2)
⇒ y′′ + p(t)y′ + q(t)y = y(v′ + v2) + p(t)vy + q(t)y = 0
Thus if y 6= 0, v′ + v2 + p(t)v + q(t) = 0 (a Riccati eqn.)
y′′ − y = 0 ⇒ p = 0, q = −1 and
the associated Riccati eqn. is v′ + v2 − 1 = 0
Two particular solutions are given by v1,2 = ±1
v1 = 1 ⇒ y′1 = y1 ⇒ y1 = et

v2 = −1 ⇒ y′2 = −y2 ⇒ y2 = e−t

⇒ {et, e−t} is a fund. set
⇒ Gen Soln: y = c1e

t + c2e
−t

Equivalently, v′ + v2 − 1 is a separable eqn.
dv

1− v2
= dt,

1

2

(
1

1 + v
+

1

1− v

)
dv = dt

⇒ v =
ke2t − 1

ke2t + 1
, k ∈ R

v =
y′

y
= 1− 2

ke2t + 1
.

Letting u =
2

ke2t + 1
and integrating gives the same answer

b) Let r > 0 and k > 0 be real numbers. Find the general solution of y′ = (r − ky)y.
Determine the limit of y(t) as t→∞
Solution:

This eqn. is important in population dynamics.
y′ − ry = −ky2 a Bernoulli equation
Let u = y−1 ⇒ u′ + ru = k is a linear eqn.

⇒ (ertu)′ = kert ⇒ ertu =
k

r
ert + c, c ∈ R

⇒ u = k/r + ce−rt, y = u−1 =
1

k/r + ce−rt

⇒ y =
r

k + cre−rt

⇒ lim
t→∞

y(t) =
r

k
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