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MATH 202 FINAL EXAM SOLUTION KEY

IMPORTANT
1. Write your name, surname on top of each page.
2. The exam consists of 7 questions some of which have more than one part.
3. Please read the questions carefully and write your answers neatly under the corresponding questions.
4. Show all your work. Correct answers without sufficient explanation might not get full credit.
5. Calculators are not allowed.

1 2 3 4 5 6 7 total

20 pts 20 pts 20 pts 20 pts 20 pts 25 pts 25 pts 150 pts

1.)(a)[10] Use the change of variable v =
y

t2
to solve the initial value problem:

y′ =
2y

t
+ t tan

y

t2
, y(1) =

π

6
.

Solution:

y = vt2 which means y′ = v′t2 + 2tv. Inserting into the equation: v′t = tan t which is
separable:

dv

tan v
=

dt

t
⇒ ln | sin v| = ln |t|+ ln |c| ⇒ sin v = ct.

(Under mild domain restrictions) this is equivalent to: v = arcsin ct, hence

y = t2 arcsin ct.

Imposing the IC it is found that c = 1/2. Thus:

y = t2 arcsin
t

2
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(b)[10] Find a second solution of t2y′′ + ty′ − y = 0, t > 0 if y1 = t is a given solution.

Solution:

Reduction of order: set y2 = tv(t) and substitute this together with y′2, y
′′
2 into the

equation to get tv′′ + 3v′ = 0. Letting u = v′ it becomes a 1st order separable equation:

du

u
= −3

dt

t
⇒ u = t−3 = v′.

One integration yields v = −t−2/2. Then y2 = −t−2t/2 = −t−1/2. But the constant in
front of t−1 is unimportant. Hence:

y2 =
1

t

Alternative way: You could explicitly state that this is an Euler differential equation and solutions are
of the form tr find r to be 1 or −1 and say that r = −1 corresponds to a second fundamental solution.

�

2.)[20] Solve the initial value problem: y′′ − 2y′ − 3y = 6 + e−t, y(0) = −2, y′(0) = 0.

Solution:

Complementary solution: Characteristic equation is r2 − 2r − 3 = 0 ⇒ (r − 3)(r + 1) =
0 ⇒ r = 3,−1. So yc = c1e

3t + c2e
−t.

Particular solution: We can use the method of undetermined coefficients: setting yp =
Ate−t + B (since e−t ∈ yc), we find y′p = Ae−t − Ate−t and y′′p = Ate−t − 2Ae−t. Insert
these into the equation to get:

−4Ae−t − 3B = 6 + e−t ⇒ A = −1/4, B = −2.

So the general solution of the differential equation becomes:

y = c1e
3t + c2e

−t − 1

4
te−t − 2.

Now we use the IC to find c1 and c2:

y(0) = c1 + c2 − 2 = −2 ⇒ c2 = −c1

y′(0) = 3c1 − c2 − 1/4 = 0 ⇒ 3c1 + c1 = 1/4 ⇒
c1 = 1/16 ⇒ c2 = −1/16.

The solution of the IVP is:

y =
1

16
e3t − 1

16
e−t − 1

4
te−t − 2

One can also use the Laplace transform or variation of parameters to solve this problem.
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3.) Consider the differential equation: xy′′ + 2y′ + xy = 0.
(a)[04] Which values of x are ordinary, regular singular, or irregular singular points?

Solution:

Coefficient of y′′ vanishes only when x = 0 which means all points but x = 0 are ordinary
points. x = 0 is a singular point. To determine if regular or irregular we check the limits:

lim
x→0

x
2

x
= 2

lim
x→0

x2x

x
= 0

 both finite ⇒ x = 0 is a regular singular point.

There is no irregular singular point.
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(b)[16] There is only one regular singular point, call it x0. Find a fundamental solution near x0

corresponding to the bigger root of the indicial equation. What is the sum of this series solution?
How does it behave when x is close to 0?

Solution:

We first conclude that x0 = 0. We start with y =
∞∑

n=0

anx
n+r and compute

y′ =
∞∑

n=0

an(n + r)xn+r−1, y′′ =
∞∑

n=0

an(n + r)(n + r − 1)xn+r−2.

Plugging into the equation we receive:

∞∑
n=0

an(n + r)(n + r − 1)xn+r−1 + 2
∞∑

n=0

an(n + r)xn+r−1 +
∞∑

n=0

anx
n+r+1 = 0.

We transform indices so that powers of x coincide. One way is in the last summand set
n + 1 → n− 1. It becomes

∑∞
n=2 an−2x

n+r−1. Rewriting the equation:

a0x
r−1(r(r − 1) + 2r) + a1x

r(r(r + 1) + 2(r + 1))

+
∑∞

n=2[an ((n + r)(n + r − 1) + 2(n + r))︸ ︷︷ ︸
(n+r)(n+r+1)

+an−2]x
n+r−1 = 0.

The minimum power gives the indicial equation, a0 6= 0, and it is: r(r − 1) + 2r = 0 ⇔
r2 + r = 0 ⇔ r1 = 0, r2 = −1. These are exponents of singularity. Note that r1 − r2 = 1
is an integer. Still a non-logarithmic solution exists for the bigger root r1 = 0. From this
point on set r = 0. Recurrence relation becomes:

2a1 = 0 and ak = − ak−2

k(k + 1)
, k ≥ 2.

We conclude that a2k+1 = 0 as a1 = 0 and every coefficient is determined by the two-less
indexed one. Let us understand the even numbered coefficients:

a2k = − a2k2

(2k + 1)2k
=

a2k−4

(2k + 1)2k(2k − 1)(2k − 2)
= · · · = (−1)k a0

(2k + 1)!
.



Then a fundamental solution (set a0 = 1) for r = 0 is:

y = x0

∞∑
n=0

(−1)n x2n

(2n + 1)!
= 1− x2

3!
+

x4

5!
− x6

7!
+ · · ·

=
1

x

(
x− x3

3!
+

x5

5!
− x7

7!
+ · · ·

)

=
sin x

x

Behaviour near x = 0: lim
x→0

sin x

x
= 1, meaning that it does not blow up.

Note that the other solution, for r = −1 is also a usual series without a logarithm. Namely cos x/x.
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4.)[20] Find the solution of the initial value problem:

y′′ + 4y′ = δ(t− π) sin(t/6), y(0) = 2, y′(0) = 1.

Solution:

Applying the Laplace transform:

s2Y (s)− sy(0)− y′(0) + 4sY (s)− 4y(0) = L{δ(t− π) sin(t/6)}

=

∫ ∞

0

estδ(t− π) sin(t/6)dt

= e−πs sin(π/6) =
e−πs

2
.

Using the given conditions and isolating Y (s) we obtain:

Y (s) =
2

s + 4
+

9

s2 + 4s
+

e−πs

2(s2 + 4s)

=
2

s + 4
+

9

(s + 2)2 − 4
+

e−πs

2[(s + 2)2 − 4]
.

We are now ready for the inversion process:

y(t) = 2e−4t +
9

2
e−2t sinh 2t +

1

4
uπ(t)e−2(t−π) sinh 2(t− π)

Or if you use partial fractions an equivalent answer is:

y(t) =
9

4
− 1

4
e−4t +

1

4
uπ(t)e−2(t−π) sinh 2(t− π)

or

y(t) =
9

4
− 1

4
e−4t +

1

8
uπ(t)(1− e−4(t−π))

In the solution above two identities have been used:

1. L{ectf(t)} = F (s− c)

2. L{uc(t)f(t− c)} = e−csF (s)
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5.)[20] Find the fundamental matrix Ψ for the linear system:

x′1 = −x1 − x2

x′2 = x1 − x2
such that x(0) =

[
2
1

]
.

Solution:

Let us first find the eigenvalue of the coefficient matrix A =

[
−1 −1

1 −1

]
by evaluating

the determinant |A− λI|:∣∣∣∣ −1− λ −1
1 −1− λ

∣∣∣∣ = (1 + λ)2 + 1 = 0 ⇒ λ = −1± i.

So, eigenvalues are complex conjugates. It suffices to find an eigenvector for one of these
eigenvalues. Set λ = −1 + i and determine the solution space of (A − λI)v = 0. Row
reducing the coefficient matrix:[

−i −1
1 −i

]
−→

[
1 −i
1 −i

]
−→

[
1 −i
0 0

]

Thus, components of solution satisfy v1 = iv2. We choose an eigenvector to be: v =

[
i
1

]
and write the solution:

x = veλt =

[
i
1

]
e−t(cos t + i sin t) = e−t

[
i cos t− sin t
cos t + i sin t

]
Separating here real and imaginary parts:

x =

[
−e−t sin t
e−t cos t

]
︸ ︷︷ ︸

x[1]

+i

[
e−t cos t
e−t sin t

]
︸ ︷︷ ︸

x[2]

we obtain two fundamental solutions. The general solution is given by the superposition
x = c1x

[1] + c2x
[2] where the constants are to be determined by the IC:

x(0) = c1

[
0
1

]
+ c2

[
1
0

]
=

[
2
1

]
⇒ c1 = 1, c2 = 2.

Hence the fundamental matrix required is:

Ψ =

[
−e−t sin t 2e−t cos t
e−t cos t 2e−t sin t

]
Note that columns of this matrix may be interchanged.
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6.) Consider f(x) =

{
1 0 < x ≤ π/2
2 π/2 < x ≤ π

, f(x + π) = f(x).

(a)[07] Sketch the graph of the function to which the Fourier series of f(x) converges over [−π, π]
[Justify how you draw the picture].

Solution:

We use the convergence theorem for Fourier series:

Fourier series of f(x) → f(x+) + f(x−)

2
at every x where f is discontinuous and it

converges to f(x) at every x where f is continuous.

(b)[06] Extend f(x) as an odd function on [−π, π] and sketch the graph of the extended function
over this interval. What is the period of this extension?

Solution:

We extend f so that it becomes odd. To do that we need to enlarge the period, i.e. we
define f on the symmetric interval in the following way:

fodd =


1 0 < x ≤ π/2
2 π/2 < x < π

−1 −π/2 ≤ x < 0
−2 −π < x < −π/2

0 x = 0, π

The extended function has the fundamental period 2π.



(c)[12] Find the Fourier sine series of f(x). Sketch the graph of the function to which the Fourier
sine series converges over [−π, π].

Solution:

The Fourier sine series of f(x) is given by:

f(x) =
∞∑

n=1

bn sin
nπx

L

where:

bn =
2

L

∫ L

0

f(x) sin
nπx

L
dx, n = 1, 2, ...

In this problem L = π: half period for the odd extension. Using the definition of f(x) as
well, the coefficient integral becomes:

bn =
2

π

∫ π

0

f(x) sin nxdx

=
2

π

∫ π/2

0

sin nxdx +
2

π

∫ π

π/2

2 sin nxdx

= − 2

nπ
cos nx

∣∣∣∣π/2

0

− 4

nπ
cos nx

∣∣∣∣π
π/2

=
2

nπ

[
1 + cos

nπ

2
− 2 cos nπ

]
Hence the Fourier sine series is explicitly:

f(x) =
∞∑

n=1

2

nπ

[
1 + cos

nπ

2
− 2 cos nπ

]
sin nx.
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7.)[25] Using separation of variables solve the heat conduction problem described by:

ut = uxx , 0 < x < π subject to
ux(0, t) = 0, ux(π, t) = 0,
u(x, 0) = π + 2 cos 3x− π2 cos 10x.

Solution:

SoV means setting u(x, t) = X(x)T (t) so that the heat equation becomes XT ′ = X ′′T .
By separation we get:

X ′′

X
=

T ′

T
= −λ ⇒

{
X ′′ + λX = 0
T ′ + λT = 0

On the other hand as usual the boundary conditions, being homogeneous, can be imposed
only on X:

ux(0, t) = X ′(0)T (t) = 0 ⇒ X ′(0) = 0
ux(π, t) = X ′(π)T (t) = 0 ⇒ X ′(π) = 0

The initial condition remains to be considered later as it is not homogeneous. Let us now
find the eigenvalues of the problem:

Case 1: λ > 0 Set λ = a2. Solve X ′′ + a2X = 0 together with the BC above. Clearly
X = c1 cos ax+ c2 sin ax and X ′ = −ac1 sin ax+ ac2 cos ax. Using the BC: X ′(0) = ac2 =
0 ⇔ c2 = 0 (a 6= 0). The other BC: X ′(π) = −ac1 sin aπ = 0, in order not to make the
solution a trivial one we seek a 6= 0 such that sin aπ = 0. We find that a = 1, 2, 3, ... work
or a = n, n = 1, 2, ... Conclusion:

λ = n2 and Xn = cos nx, n = 1, 2, ...

are eigenvalues and eigenfunctions, respectively.

Case 2: λ < 0 Set λ = −a2. Then X = c1e
ax+c2e

−ax and X ′ = ac1e
ax−ac2e

−ax. Using the
BC: X ′(0) = c1− c2 = 0 ⇒ c1 = c2, and using the other one X ′(π) = ac1(e

πa − e−πa) = 0
which has no solution unless c1 = 0 or a = 0 both of which are not allowed. No eigenvalue,
no eigenfunction.

Case 3: λ = 0 We solve X ′′ = 0. Easily we find that X = c1+c2x and X ′ = c2. Boundary
conditions are on the derivative: X ′(0) = c2 = 0 and X ′(π) = c2 = 0 are both satisfied
if c2 = 0. Note that c1 remains free. Hence X = c1 solves the equation and satisfies the
BC for any number c1. Conclusion:

λ = 0 and X0 = 1

are eigenvalue and eigenfunction respectively.

Case 1 and Case 3 can easily be combined to find the complete set of eigenvalues and
eigenfunctions:

λ = n2 and Xn = cos nx, n = 0, 1, 2, ...

Now solve the equation for T : but this is easy, T = exp(−λt) gives fundamental solutions
to be Tn = e−n2t, for n = 0, 1, 2, ...



We now superpose all solutions and use the initial condition. Namely:

u(x, t) =
∞∑

n=0

anXnTn =
∞∑

n=0

ane
−n2t cos nx.

We now impose the initial condition:

u(x, 0) =
∞∑

n=0

an cos nx = π + 2 cos 3x− π2 cos 10x

which is satisfied only when

a0 = π, a3 = 2, a10 = −π2

and all aj = 0, for j 6= 0, 3, 10. Hence the solution of the initial-boundary value problem
is:

u(x, t) = π + 2e−9t cos 3x− π2e−100t cos 10x

�

Some basic Laplace transforms you might need

L{1} =
1
s
, s > 0 L{eat} =

1
s− a

, s > a L{sin at} =
a

s2 + a2
, s > 0

L{cos at} =
s

s2 + a2
, s > 0 L{sinh at} =

a

s2 − a2
, s > |a| L{cosh at} =

s

s2 − a2
, s > |a|



Solutions to Math 202: Final Exam. Jan. 06, 2005

1. (10 pnts) Given y′′ + 1
xy′ − y = 0, show that although x = 0 is a

regular singular point you can still find (!) a solution which is ana-
lytic (therefore continuous) at x = 0. Prove that its domain of con-
vergence is the whole real line. Solution:y (x) =

∑∞
n=0 anxn =⇒ a1

x +∑∞
n=2[n

2an − an−2]xn−2 = 0 =⇒ a1 = 0, an = an−2
n2 ,let a0 = 1 =⇒

y = 1 +
∑∞

n=1
x2n

224266···(2n)2 = 1 + 1
22 x2 + 1

2242 x4 + 1
224266 x6 + ..which

is an analytic function at x = 0. Ratio Test gives Limn→∞|
a2(n+1)

a2n
| =

Limn→∞| x2

(2n+2)2 | = 0 < 1,i.e the radius of convergence is ∞, i.e. the
domain of convergence is the whole real line

2. (5 pnts) Given the integral equation f(t) = 2t−
∫ t

0
e(t−α)f(α)dα for the

unknown function f(t), solve it by Laplace transform.

Solution: Observe that f(t) = 2t−et ∗f(t) and Convolution Theorem
gives:

F (s) = 2
s2 − F (s)

s−1 =⇒ F (s) = 2s−2
s3 = 2

s2 − 2
s3 =⇒ f(t) = 2t− t2.

3. (5 pnts) Given the same integral equation f(t) = 2t−
∫ t

0
e(t−α)f(α)dα

by taking its derivative reduce it into an initial value problem of a first or-
der differential equation and then solve it. You should use d

dx

∫ h(x)

0
F (x, y)dy =∫ h(x)

0
∂
∂xF (x, y)dy + F (x, h(x)) · h′(x).

Solution: First observe that f(0) = 0. Derivative gives: f ′ = 2 +
(−

∫ t

0
e(t−α)f(α)dα) − e0f(t) =⇒ f ′ = 2 + (f − 2t) − f =⇒ f ′ = 2 − 2t

=⇒ f = 2t− t2 + c, f(0) = 0 =⇒ f(t) = 2t− t2.

4. (10 pnts)

(a) Prove that d
dsLaplace{f(t)} = Laplace{−t f(t)}.

Solution: d
dsLaplace{f(t)} = d

ds

∫∞
0

e−stf(t)dt = −
∫∞
0

e−stt·f(t)dt =
−Laplace{t · f(t)}.

(b) Use the above fact to solve ty′′ + (t− 1)y′ + y = 0, y(0) = 0, y′(0) =
α = arbitrary.

Solution: − d
dsLaplace{y′′}− d

dsLaplace{y′}−Laplace{y′}+Laplace{y} =
0 =⇒− d

ds (s2Y −s·0−α)− d
ds (sY −s·0)−(sY −s·0)+Y = 0 =⇒ 2sY +

s2Y ′ + Y + sY ′ + sY − Y = 0 =⇒
s(s + 1)Y ′ + 3sY = 0 =⇒ Y ′

Y = − 3
s+1 =⇒ Y (s) = c

(s+1)3 =⇒
y(t) = ce−tt2.

5. (10 pnts) Solve the following Boundary Value Probelem: x2y′′ − 3xy′ +
(4 + π2)y = 1, y(1) = 0, y(2) = 0.

Solution: This is a Cauchy-Euler type differential wquation: Putting
y = xr =⇒ r(r− 1)− 3r +(4+π2) = 0 =⇒ (r− 2)2 = −π2 =⇒ r = 2±πi

1



and yHS = x2(c1 cos π lnx + c2 sinπ lnx). Clearly yPS = 1
4+π2 , thus G.S.

y = x2(c1 cos π lnx + c2 sinπ lnx) + 1
4+π2 . Now the Boundary Conditions:

y(1) = c1 + 1
4+π2 = 0, y(2) = 4(c1 cos π ln 2 + c2 sinπ ln 2) + 1

4+π2 = 0 =⇒
c1 = − 1

4+π2 , c2 =sen bul!

6. (10 pnts) Solve the following Eigenvalue Probelem: y′′ + λy = 0, y′(0) =
0, y′(π) = 0. Assume that all eigenvalues are real.

Solution: For λ = 0 we get y = c1 + c2x,and y′ = c2. B.C. gives c2 = 0
and we can take c1 = 1. i.e.0. is an e.value with e. fn 1. For λ < 0 we
can set λ = −µ2 with µ > 0. D.E becomes y′′ − µ2y = 0, which gives
y = c1 coshµx + c2 sinhµx, with y′ = c1µ sinhx + c2µ coshx. B.C. gives
c2 = 0 and c1 sinhµπ = 0 which gives c1 = 0 because sinhµπ 6= 0,i.e.
no negative eigenvalues. For λ > 0 we can set λ = µ2 with µ > 0 .
D.E becomes y′′ + µ2y = 0 which gives y = c1 cos µx + c2 sinµx, with
y′ = −c1µ sinµx + c2µ cos µx. B.C. gives c2 = 0 and −c1µ sinµπ = 0
which forces us to set sinµπ = 0 for non-trivial solns, i.e. µπ = nπ i.e.
µ = n = 1, 2, 3, .... In short λ = n2 are the positive eigenvalues with the
corresponding eigenfunctions cos nx, n = 1, 2, 3, ... .To sum up what we
found is that λn = n2 are the (countably infinite) eigenvalues with their
corresponding eigenfunctions yn(x) = cos nx, n = 0, 1, 2, ....
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1. Suppose that e−t and 1 − e−2t are both solutions to ODE y
′′

+ by
′
+ ky = q(t) where b and k

are constants. What are b and k, and what is q(t)?

Solution:

Let y1 = 1 + e−t & y2 = 1− 2e−2t

⇒
{

y
′
1 = −e−t y

′
2 = 4e−2t

y
′′
1 = e−t y

′′
2 = −8e−2t

Since y1 & y2 both satisfy y
′′

+ by
′
+ ky = q(t)

(1− b + k)e−t + k = q(t)
(−8 + 4b− 2k)e−2t + k = q(t)

}
⇒ (1− b + k)e−t + k = (−8 + 4b− 2k)e−2t + k

⇒ 1− b + k = 0 and −8 + 4b− 2k = 0

So, b = 3 and k = 2.

Then, q(t) = 2 follows.

OR: y1 − y2 = e−t + 2e−2t is a solution of y
′′

+ by
′
+ ky = 0

⇒ (D + 1)(D + 2)y = 0

⇒ (D2 + 3D + 2)y = 0

⇒ b = 3 & k = 2.



2. Given the function f(x) =

{
1 if 0 ≤ x ≤ π/2
0 if π/2 ≤ x ≤ π

a) Find the Fourier cosine series of f;
b) Find the Fourier sine series of f;
c) Find the Fourier series of f;
d) Graph the three series found over the interval [−3π, 3π];
e) Using one of the series found show that π/4 can be expressed as the sum of an alternating
series.

Solution:

a) Fourier cosine series of f is the Fourier expansion of Ef , which is

Ef ∼
a0

2
+

∞∑
n=1

an cos(nx)

where a0 =
2

π

∫ π

0

f(x)dx =
2

π

∫ π/2

0

1dx = 1

an =
2

π

∫ π

0

f(x) cos(nx)dx =
2

π

∫ π/2

0

cos(nx)dx =
2

nπ

[
sin(n

π

2
)
]

=

{
0 , n even
2

nπ
sin(n

π

2
) , n odd.

So,

Ef ∼
1

2
+

2

π

[
cos x− 1

3
cos(3x) +

1

5
cos(5x)− 1

7
cos(7x) + ...

]
b) Fourier cosine series of f is the Fourier expansion of Of , which is

Of ∼
∞∑

n=1

bn sin(nx)

where

bn =
2

π

∫ π

0

f(x) sin(nx)dx =
2

π

∫ π/2

0

sin(nx)dx = − 2

nπ

[
cos(n

π

2
)− 1

]

=


2

nπ
, n odd

0 n even&n = 4k
4

nπ
n even&n 6= 4k

Hence,

Of ∼
2

π

[
sin x + sin(2x) +

1

3
sin(3x) +

1

5
sin(5x) + ...

]
c) Now Fourier series; p =

π − 0

2
=

π

2

f(x) ∼ a0

2
+

∞∑
n=1

[
an cos(

nπx

p
) + bn sin(

nπx

p
)

]
where

a0 =
2

π

∫ π/2

0

1dx = 1



an =
2

π

∫ π/2

0

1. cos(2nx)dx =
1

nπ
[sin(nπ)− 0] = 0

bn =
2

π

∫ π/2

0

1. sin(2nx)dx = − 1

nπ
[cos(nπ)− 1] =

{
0 , n even
2

nπ
, n odd.

So,

f(x) ∼ 1

2
+

2

π

∞∑
n=1

1

2n− 1
sin [2(2n− 1)x]

=
1

2
+

2

π

[
sin(2x) +

1

3
sin(6x) +

1

5
sin(10x) + ...

]
d)

-

6d dt td d dt
d dtd td

dtdtdt
−3π −2π −π π 2π 3π

(Fourier Cosine)
1

-

6

d

d
t d

d
t td d dt t

d

dd

dtd td
dt

dt
d

d
t
d

t
−3π −2π −π π 2π 3π

(Fourier Sine)
1

−1

-

6d dt d
dt td d dt

dttd
d

dd
dtd dttdd

d
d
dtdtd

d
dt
dtdd

−3π −2π −π π 2π 3π

(Fourier Series)
1

e)Using part (c) for x = π/4

f(
π

4
) = 1 =

1

2
+

2

π

[
1− 1

3
+

1

5
− 1

7
+ ...

]
⇒ π

4
=

[
1− 1

3
+

1

5
− 1

7
+ ...

]



3. An nth order homogenous linear differential equation with constant coefficients has character-
istic equation f(r) = 0. If all the roots of characteristic equation are negative, find limit as
x →∞ of any solution of the differential equation, if this limit exists. What can you conclude
about the behavior of all solutions on the interval [0,∞), if all the roots of the characteristic
equation are non-positive ?

Solution:

Since differential equation is order n, f(r) = 0 has n roots. It’s given that all roots
are negative.

CASE1: If all n roots r1, r2, ..., rn of f(r) = 0 are distinct then any solution is of the
form

y = c1e
r1x + c2e

r2x + ... + cne
rnx for some c1, c2, ..., cn ∈ R.

For r < 0, limx→∞ erx = 0.

Hence limx→∞ y = 0 follows.

CASE2: If some root, say r, of f(r) = 0 is repeated then any solution involves a term
(c1 + c2x + ... + ckx

k−1)erx for 2 ≤ k ≤ n & for some c1, c2, ..., cn ∈ R.

As limx→∞ xkerx = 0 (for r < 0) again limx→∞ y = 0 for any solution y.

Now, if any root of f(r) = 0 satisfy that r ≤ 0 then

lim
x→∞

erx = 1 if r = 0

lim
x→∞

erx = 0 if r < 0

Hence any solution has a horizontal asymptote if root of f(r) = 0 are distinct.

In case that a root r off(r) = 0 is repeated and r = 0, then any solution includes a
term of the form c1 + c2x + ... + ckx

k−1 for 2 ≤ k ≤ n then limit of the solution as
x →∞ becomes infinity.



4. a) What function f(t) has Laplace transform
1

s(s2 + 4s + 8)
?

b) Write down an Initial Value Problem whose solution is this function f(t).(Don’t neglect the
initial conditions! )

Solution:

a) ϕ(s) =
1

s(s2 + 4s + 8)
=

(1/8)

s
− (1/8)s + (1/2)

s2 + 4s + 8

=
1

8

(
1

s

)
− 1

8

s + 2

(s + 2)2 + 22
− 1

8

2

(s + 2)2 + 22

⇒ f(t) = £−1[ϕ(s)] =
1

8
− 1

8
e−2t(cos 2t + sin 2t)

b) Consider a constant coefficient homogenous linear D.E. so that a solution is f(t).

The roots of its characteristic equation are,

0, −2 + 2i, −2− 2i

As (−2 + 2i) + (−2− 2i) = −4

(−2 + 2i) · (−2− 2i) = 4 + 4 = 8,

Characteristic Equation: r(r2 + 4r + 8) = 0

Hence D.E.: y
′′′

+ 4y
′′

+ 8y
′
= 0

Now, f(t) =
1

8
− 1

8
e−2t(cos 2t + sin 2t) is a solution of this D.E.

For f(0) = 0

& f
′
(t) =

1

4
e−2t(cos 2t + sin 2t)− 1

8
e−2t(−2 sin 2t + 2 cos 2t)

& f
′
(0) =

1

4
− 2

8
= 0

& f
′′
(t) = e−2t(− sin 2t + cos 2t)

& f
′′
(0) = 1

Hence IVP: y
′′′

+ 4y
′′

+ 8y
′
= 0, y(0) = y

′
(0) = 0 & y

′′
(0) = 1.



5. a) Find a real 2× 2 matrix A whose eigenvalues are 2 and -1, with corresponding eigenvectors[
1
2

]
and

[
2
1

]
respectively;

b) Write down the general solution of the system of equations given by
−−−→
X

′
(t) = A

−−→
X(t);

c) Find the general solution of the non-homogenous system
−−−→
X

′
(t) = A

−−→
X(t) +

[
et

0

]
Solution:

a) Let A =

[
a b
c d

]
For λ = 2 & corresponding eigenvector −→c =

[
1
2

]
(A− 2I)−→c =

−→
0 ⇒ a + 2b = 2 and c + 2d = 4

For λ = −1 & corresponding eigenvector −→c =

[
2
1

]
(A + I)−→c =

−→
0 ⇒ 2a + b = −2 and 2c + d = −1

⇒ A =

[
−2 2
−2 3

]
b) General solution:

−→
X (t) =

(
x(t)
y(t)

)
= c1

(
1
2

)
e2t + c2

(
2
1

)
e−t =

(
e2t 2e−t

2e2t e−t

) (
c1

c2

)
, c1, c2 ∈ R

c) Let
−→
Xp(t) =

(
e2t 2e−t

2e2t e−t

) (
c1(t)
c2(t)

)
be a particular solution of the non-homogenous

system.

Then

(
e2t 2e−t

2e2t e−t

) (
c

′
1

c
′
2

)
=

(
et

0

)
must hold.

⇒ c
′

1 = −1

3
e−t, c

′

2 =
2

3
e2t

⇒ c1 =
1

3
e−t, c2 =

1

3
e2t ⇒

−→
Xp(t) =

(
et

et

)
Thus the general solution of the non-homogenous system

−→
X (t) =

(
x(t)
y(t)

)
=

(
e2t 2e−t

2e2t e−t

) (
c1

c2

)
+

(
et

et

)
, c1, c2 ∈ R



6. Find a linear differential equation with constant coefficients satisfied by all the given functions:

u1(x) = cosh x, u2(x) = sinh x, u3(x) = x cosh x, u4(x) = x sinh x.

Solution:

cosh x =
1

2
ex +

1

2
e−x

sinh x =
1

2
ex − 1

2
e−x

So, u1, u2, u3, u4 satisfy (D2 − 1)2y = 0

i.e. y(4) − 2y
′′

+ y = 0

7. Find the function y(t) that satisfies the integral equation

y(t) = t2 +

∫ t

0

y(u) sin(t− u)du.

Solution:

∫ t

0

y(u) sin(t− u)du = sin t ∗ y(t)

Applying Laplace transform

£[y(t)] = £[t2] + £[sin t ∗ y(t)]

=
2!

s3
+ £[sin t]︸ ︷︷ ︸ ·£[y(t)]

1

s2 + 1

⇒ £[y(t)]

(
1− 1

s2 + 1

)
=

2

s3

⇒ £[y(t)] =
2(s2 + 1)

s5
= 2

[
1

s3
+

1

s5

]
⇒ y(t) = 2

[
t2

2
+

t4

4!

]
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1.)[20] Solve the following differential equation by finding an integrating factor µ = µ(x):

(x+ 2) sin y dx+ x cos y dy = 0.

Solution:

Realize that
∂M

∂y
= (x+ 2) cos y 6= cos y =

∂N

∂x

and the differential eqution is not exact. Then

p(x) =
(x+ 2) cos y − cos y

x cos y
=
x+ 1

x
= 1 +

1

x

and µ(x) = e
∫

p(x)dx = e
∫

(1+ 1
x
)dx = ex+ln x = xex. So multiplying by this integrating factor,

µ(x) = xex, the following differential equation:

(xex(x+ 2) sin y)dx+ (x2ex cos y)dy = 0

is exact.

Let Φ =

∫
(x2ex cos y)dy = x2ex sin y + ψ(x). Then

∂Φ

∂x
= ψ′(x) + 2xex sin y + x2ex sin y = xex(x+ 2) sin y = x2ex sin y + 2xex sin y.

So ψ′(x) = 0 and ψ(x) = c a constant.

The family of solutions is : x2ex sin y + c = 0.



2.)[20] Find the general solution of the differential equation:

y′′′ − y′ = 3t+ cos t.

Solution:

The characteristic equation is r3−r = 0. Then we get three distinct roots. r = 0,+1,−1.
The homogeneous solution is

yh(t) = c1 + c2e
t + c3e

−t.

To find the particular solution we use the the method of undetermined coefficients. Let
yp(t) = At+Bt2 + C cos t+D sin t. Then

y′p(t) = A+ 2Bt− C sin t+D cos t,

y′′p(t) = 2B − C cos t−D sin t,

y′′′p (t) = C sin t−D cos t.

Plugging into the differential equation, we get:

C sin t−D cos t− A− 2Bt+ C sin t−D cos t = 3t+ cos t.

Solving for the coefficients: A = 0, B = −3/2, C = 0, D = −1/2. Then the particular

solution is: yp(t) = −3

2
t2 − 1

2
sin t.

The general solution becomes: y(t) = −3

2
t2 − 1

2
sin t+ c1 + c2e

t + c3e
−t.

3.) Consider the differential equation about the point x = 0:

y′′ + 4x2y = 0.

(a)[10] Find the recurrence relation which defines two fundamental series solutions about x = 0.

Solution:

First note that x = 0 is an ordinary point. Let y =
∞∑

n=0

anx
n. Then y′ =

∞∑
n=1

nanx
n−1,

and y′′ =
∞∑

n=2

n(n− 1)anx
n−2. Plugging into the DE,

∞∑
n=2

n(n− 1)anx
n−2 + 4

∞∑
n=0

anx
n+2 = 0.

By rearranging the coefficients and the indicies we get,

∞∑
n=0

(n+ 2)(n+ 1)an+2x
n +

∞∑
n=2

4an−2x
n = 0.

From n = 0: 2a2 = 0 and from n = 1: 6a3 = 0. Both a2 = 0 = a3. The recurrence
relation is:

(n+ 2)(n+ 1)an+2 + 4an−2 = 0.



(b)[10] Compute the first three non-zero terms of each fundamental solution about x = 0.

Solution:

As a2 and a3 is both zero, from the recurrence relation we see that a4k+2 = 0 and a4k+3 = 0
for all k ∈ Z+. Then

a4 = −4(a0)

4(3)
= −a0

3
, a8 = −

4(−a0

3
)

8(7)
=
a0

42
.

a5 = −4(a1)

5(4)
= −a1

5
, a9 = −

4(−a1

5
)

9(8)
=
a1

90
.

The two fundamental solutions y1 and y2 with three non-zero terms will be as follows:

y1 = 1− 1

3
x4 +

1

42
x8 + · · ·

y2 = x− 1

5
x5 +

1

90
x9 + · · · .

4.)[20] Solve the integro-differential equation:

y′(t) + 2y(t) +

∫ t

0

y(τ)dτ = sin t where y(0) = 1.

Solution:

Start by taking the Laplace transform of both sides of the equation.

L{y′}+ 2L{y}+ L{
∫ t

0

y(τ)dτ } = L{sin t}

sL{y} − y(0) + 2L{y}+ L{
∫ t

0

1 · y(τ)dτ } =
1

s2 + 1

sL{y} − 1 + 2L{y}+ L{1 ? y} =
1

s2 + 1

(s+ 2)L{y}+ L{1}L{y} =
1

s2 + 1
+ 1

Simplifying

(s+ 2)L{y}+
1

s
L{y} =

1

s2 + 1
+ 1

(s+ 1)2

s
L{y} =

1

s2 + 1
+ 1

L{y} =
1

(s2 + 1)

s

(s+ 1)2
+

s

(s+ 1)2

Split the right hand side into partial fractions:

L{y} =
As+B

s2 + 1
+
Cs+D

(s+ 1)2
+

s+ 1

(s+ 1)2
− 1

(s+ 1)2

L{y} =
1/2

s2 + 1
+

−1/2

(s+ 1)2
+

1

s+ 1
− 1

(s+ 1)2
.

After taking the inverse Laplace transform,

y(t) =
1

2
sin t− 1

2
e−tt+ e−t − e−tt.

y(t) =
1

2
sin t− 3

2
e−tt+ e−t.



5.)[20] Let f(t) = TtU be the function of greatest integer value less than or equal to t for t ≥ 0. That
is, if n ∈ Z+ ∪ {0} and n ≤ t < n+ 1, then f(t) = n. Find the Laplace transform of f(t).

[Hint:
∞∑

n=0

xn =
1

1− x
if |x| < 1.]

Solution:

Now, realize that the greatest integer function f(t) can be represented in terms of step
functions as follows:

f(t) = (u1 − u2) + 2(u2 − u3) + 3(u3 − u2) + 4(u4 − u3) + · · ·

f(t) = u1 + u2 + u3 + u4 + · · ·
So if we take the Laplace transform of f(t) we get:

L{f(t)} = L{u1(t)}+ L{u2(t)}+ L{u3(t)}+ · · ·

L{f(t)} =
∞∑

n=1

L{un(t)}

L{f(t)} =
∞∑

n=1

e−ns

s

By using the hint and the fact that |e−s| < 1 when s > 0,

L{f(t)} =
1

s

∞∑
n=1

(e−s)n = e−s

(
1

s

∞∑
n=0

(e−s)n

)
= e−s

(
1

s

1

(1− e−s)

)
.

After simplifying

L{f(t)} =
1

s

1

(es − 1)
.

Some basic Laplace transforms you might need for Q4 and Q5

L{1} =
1
s
, s > 0 L{eat} =

1
s− a

, s > a L{sin at} =
a

s2 + a2
, s > 0

L{cos at} =
s

s2 + a2
, s > 0 L{sinh at} =

a

s2 − a2
, s > |a| L{cosh at} =

s

s2 − a2
, s > |a|



6.)[25] Solve the following system of differential equations:

x′1 − 2x1 = 0
x′2 + x1 − 4x2 = 0

x′3 + 3x1 − 6x2 − 2x3 = 0,

where xi = xi(t) for each i = 1, 2, 3. Show that the solutions you have found are linearly independent.

Solution:

We can write the system as a matrix equation in the following manner.

X′ = AX =

 2 0 0
−1 4 0
−3 6 2

X

where X =

 x1

x2

x3

 and X′ =

 x′1
x′2
x′3

.

We find the eigenvalues for A. 0 = det(A − λI) = (2 − λ)(4 − λ)(2 − λ). We get two
eigenvalues λ1 = 2 with multiplicity two and λ2 = 4 with multiplicity one.

For λ1 = 2:  0 0 0
−1 2 0
−3 6 0

 ∼
 1 −2 0

0 0 0
0 0 0


We get x1 = −2x2, and x2 and x3 are free. Hence, we get two linearly independent

eigenvectors: v1 =

 2
1
0

 and v2 =

 0
0
1

.

For λ2 = 4:  −2 0 0
−1 0 0
−3 6 −2

 ∼
 1 0 0

0 −6 2
0 0 0


We get x1 = 0, x2 = 1

3
x3, and x3 is free. Hence, we get an eigenvector: v3 =

 0
1
3

 .
The solution to the system becomes:

X = c1

 2
1
0

 e2t + c2

 0
0
1

 e2t + c3

 0
1
3

 e4t.

To show that the solutions are linearly independent, realize that v1e
2t,v3e

4t and v2e
2t

form the columns of the 3× 3 lower triangular matrix: 2e2t 0 0
e2t e4t 0
0 3e4t e2t


which is also invertible. (Its determinant 2e8t is non-zero.)



7.)[25] Find the eigenvalues λ ∈ R and eigenfunctions for the two-point boundary value problem:

y′′ + 2y′ + λy = 0 with y(0) = y(1) = 0.

[Hint: You are supposed to find an infinite number of eigenvalues.]

Solution:

The characteristic equation of the DE is r2 + 2r + λ = 0. We obtain two roots r1,2 =
−1±

√
1− λ. We will analyze the three possible cases:

CASE 1: 1− λ > 0 Let 1− λ = α2, then

y = c1e
(α−1)t + c2e

(−α−1)t.

Plug in the boundary conditions, y(0) = 0 = c1 + c2, so c2 = −c1. Also y(1) = 0 =
c1(e

(α−1) − e(−α−1) implies e(α−1) = e(−α−1). Then α − 1 = −α − 1, and α = 0. This is
contradictory to α2 being positive. Hence c1 = 0 = c2. The only solution is the trivial
solution, y = 0.

CASE 2: 1 − λ = 0 In this case, there are repeated roots, r1 = −1 = r2. The solution
becomes:

y = c1e
−t + c2te

−t.

Plug in the boundary conditions, y(0) = 0 = c1 and y(1) = 0 = c2/e. So c2 = 0 as well.
We again get the trivial solution.

CASE 3: 1− λ < 0 Let 1− λ = −α2, then we get the solution as

y = e−t(c1 cosαt+ c2 sinαt).

Plug in the boundary conditions, y(0) = 0 = 1c1(1) and y(1) = 0 = c2 sinα. If sinα = 0,
then α = kπ for any k ∈ Z+. Then 1− λ = −α2 = −(kπ)2. The eigenvalues are

λ = 1 + k2π2 and the eigenfunctions are y = e−t sin kπt for all k ∈ Z+.
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1. Let L
(
f(t)

)
= F (s). Show that

L
(
f(at)

)
=

1

a
F (

s

a
), a > 0.

Solution:

L
(
f(at)

)
=

∫ ∞

0

e−stf(at)dt

=

∫ ∞

0

1

a
e−

su
a f(u)du (u = at; du = adt)

=
1

a
F (

s

a
).

2. Solve the following initial value problem and discuss the interval of existence

(1 + t)x′ + x = cos t; x(−π

2
) = 0.

Solution:

Observe that the left hand side equals
d

dt
((1 + t)x). Then

(1 + t)x =

∫
cos t dt = sin t + C, (C ∈ R).

Inserting the initial condition we get:

0 = sin(−π

2
) + C.

Hence C = 1 and x(t) =
sin t + 1

1 + t
.

3. Given that y(t) = e−t sin t is a solution of the constant-coefficient differential equation

9y′′′ + 11y′′ + 4y′ − 14y = 0,

find the general solution of this equation.

Solution:

It is hard to solve r in p(r) = 9r3 + 11r2 + 4r− 14 = 0. But since y(t) = e−1·t sin(1 · t) is
a solution of the DE, we deduce that (−1 + i) and hence its conjugate (−1− i) are roots
of p(r). Therefore (r + 1− i)(r + 1 + i) = r2 + 2r + 2 divides p(r). We divide and obtain
p(r) = (r2 + 2r + 2)(9r − 7). So the general solution for the DE is:

y(t) = e−t(C1 cos t + C2 sin t) + C3e
7
9
t; (C1, C2, C3 ∈ R).



4. Find a fundamental set of solutions for the differential equation:

y′′ + xy′ + 2y = 0

by means of power series about x = 0.
Find the recurrence relation, the general term in each solution found and also estimate the radius of
convergence of the solutions. Verify that the solutions form a fundamental set.

Solution:

First we observe that x = 0 is a regular point of the DE.

Now assume that the solution is of the form y =
∞∑

k=0

akx
k. Then

y′ =
∞∑

k=1

kakx
k−1; y′′ =

∞∑
k=2

k(k − 1)akx
k−2 =

∞∑
k=0

(k + 2)(k + 1)ak+2x
k.

Insert these in the DE to get:

0 =
∞∑

k=0

(k + 2)(k + 1)ak+2x
k +

∞∑
k=1

kakx
k + 2

∞∑
k=0

akx
k

= 2(a0 + a2) +
∞∑

k=1

(
(k + 2)(k + 1)ak+2 + (k + 2)ak

)
xk.

It follows that the recurrence relation is (k + 1)ak+2 = −ak, k ≥ 0.

Now first let a1 = 0. Then the terms with odd index vanish and the general term becomes:

a2k =
(−1)k

(2k − 1)(2k − 3) · · · 3 · 1
a0 =

(−1)k2kk!

(2k)!
a0.

Similarly, let a0 = 0. Then the general term becomes:

a2k+1 =
(−1)k

(2k)(2k − 2) · · · 4 · 2
a1 =

(−1)k

2kk!
a1.

Hence the general solution is given as

y = a0

∞∑
k=0

(−1)k2kk!

(2k)!
x2k + a1

∞∑
k=0

(−1)k

2kk!
x2k+1.

The radius of convergence is +∞ because the coefficient functions are analytic.

These two solutions form a fundamental set because they are linearly independent; one
contains the even powers of x while the other contains the odd powers.

5. Solve the following equation by using the Laplace transform

f(t) = 4t− 3

∫ t

0

f(x) sin(t− x)dx.

Solution:



The term containing the integral is the convolution of f(t) and sin t. Letting L
(
f(t)

)
=

F (s), the Laplace transform of the identity reads:

F (s) =
4

s2
− 3F (s)

1

s2 + 1

and we have

F (s) =
4

s2

s2 + 1

s2 + 4
= 4

s2 + 1

s2(s2 + 4)
= 4

(
1

s2 + 4
+

1

s2(s2 + 4)

)
= 2

2

s2 + 4
+

1

s2
+

3

s2 + 4
.

Therefore,

f(t) = 2 sin 2t + t +
3

2
sin 2t = t +

7

2
sin 2t.

6. Whatever real number α we choose, show that at least one nontrivial solution of the following
system tends to ±∞ as t goes to +∞:

x′ =

[
1 α

−1 1

]
x.

Solution:

Assuming a solution of the form

[
a
b

]
eλt takes us to finding the eigenvalues of the above

matrix. We require

0 =

∣∣∣∣ 1− λ α
−1 1− λ

∣∣∣∣ = (λ− 1)2 + α

to get λ = 1±
√
−α. We should investigate the behaviour of the solutions for all values

of α.

If α = 0 then λ = 1 is a double root and the general solution in this case has terms et

and tet both of which go to +∞ as t goes to +∞.

If α < 0, let α = −c2 with c ∈ R+. Then λ = 1 ± c. The general solution contains the
terms e(1+c)t and e(1−c)t; the former goes to +∞ as t → +∞ because 1 + c > 0.

If α > 0, let α = c2 with c ∈ R+. Then λ = 1 ± ic. The general solution contains the
terms e(1±ic)t = et(cos ct ± i sin ct) which go to +∞ as t → +∞ because et does so and
the second factor is bounded in magnitude.

7. (a) Find the Fourier series expansion on the interval [−1, 1] of the function

f(x) =

{
1, −1 ≤ x < 0
2, 0 ≤ x < 1

(b) Draw the graph of the series found in part (a).
(c) Using the Fourier series found in part (a), find an infinite series expansion for π.

Solution:
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1. Solve the initial value problem
x′1 = 12x1 − 15x2,

x′2 = 4x1 − 4x2,

x1(0) = 18,

x2(0) = 8.

Solution:

Let ~x =

[
x1

x2

]
, A =

[
12 −15
4 −4

]
; ~x′ = A~x. Then ~x is of the form ~x = ~ξert, where r is a

eigenvalue and ~ξ is a corresponding eigenvector. Now

p(r) = det(A− rI) = r2 − 8r + 12 = 0

gives r1 = 2, r2 = 6. Hence

(A− 2I)~ξ(1) = ~0 ⇒ ~ξ(1) =

[
3
2

]
,

(A− 6I)~ξ(2) = ~0 ⇒ ~ξ(2) =

[
5
2

]
.

So, the general solution is

~x = c1

[
3
2

]
e2t + c2

[
5
2

]
e6t.

But ~x(0) =

[
18
8

]
=

[
3c1 + 5c2
2c1 + 2c2

]
gives c1 = 1 and c2 = 3. Therefore,

~x =

[
3
2

]
e2t +

[
15
6

]
e6t

is the solution.

2. Solve the following equations.
(a) (xy + x+ 2y + 1)dx+ (x+ 1)dy = 0.
(b) (sec2 y)y′ − 3 tan y + 1 = 0.

Solution:

(a) µ(x) = ex is an integrating factor. ψx = ex(xy + x+ 2y + 1), ψy = ex(x+ 1) gives

ψ = ex(x+ 1)y + h(x),

with h′(x) = ex(x+ 1) implies h(x) = xex; ψ = ex(x+ 1)y + xex.

A one-parameter family of solutions is, therefore,

ex(xy + y + x) = c, c ∈ R.



Since the equation is linear this is the general solution.

(b) Let u = tan y, u′ = y′ sec2 y. Differential equation now becomes

u′ − 3u = −1,

a linear equation. Then
(e−3xu)′ = −e−3x

e−3xu =
1

3
e−3x + c

u = ce3x +
1

3
= tan y

Thus,

y(x) = arctan (ce3x +
1

3
).

3. (a) Suppose that p(x) and q(x) are continuous on (a, b) and {y1, y2} is a set of solutions of

y′′ + p(x)y′ + q(x)y = 0,

on (a, b) such that either y1(x0) = y2(x0) = 0 or y′1(x0) = y′2(x0) = 0 for some x0 in (a, b). Show that
{y1, y2} is not a fundamental set.

(b) Find a particular solution of y′′ − 2y′ + y = 14x
3
2 ex, x > 0.

Solution:

(a) WronskianW [y1(x0), y2(x0)] =

∣∣∣∣∣∣
y1(x0) y2(x0)

y′1(x0) y′2(x0)

∣∣∣∣∣∣ = 0 since either the first or the second

row is zero.

This implies W [y1(x), y2(x)] = 0 for all x ∈ (a, b).

Let φ(x) = c1y1(x) + c2y2(x). Then φ(x0) = φ′(x0) = 0. Since the solution must be
unique, φ(x) = 0, for all x ∈ (a, b). Thus {y1, y2} is linearly dependent.

(b) y = ex, y = xex are homogeneous solutions. Let yp = exv(x). Then v′′ = 14x
3
2 ,

hence, v(x) =
8

5
x

7
2 and so

yp =
8

5
x

7
2 ex.

4. (a) Using Laplace transform solve the integral equation

y(t) = 1 + 2

∫ t

0

y(τ) cos (t− τ)dτ.

(b) Find the inverse Laplace transform f(t) of the function

F (s) =
e−s

s3
(1 + se−s).



Solution:

(a) By convolution theorem L[y] =
1

s
+ 2L[y]L[cos t]. Hence

(
1− 2s

s2 + 1

)
L[y] =

1

s
implies

L[y] =
s2 + 1

s(s− 1)2
,

i.e., L[y] =
1

s
+

2

(s− 1)2
. Thus y(t) = L−1

[
1

s
+

2

(s− 1)2

]
gives

y(t) = 1 + 2tet.

(b) F (s) =
1

s3
e−s +

1

s2
e−2s implies

f(t) = L−1[F (s)] = u1(t)
1

2
(t− 1)2 + u2(t)(t− 2),

where uc(t) =

{
0, t < c,
1, t > c

is the unit step function.

5. Using the method of power series construct the general solution of

(1 + x2)y′′ − 8xy′ + 20y = 0,

about the point x = 0.

Solution:

x = 0 is an ordinary point, so y =
∞∑

n=0

cnx
n. Plugging y into the differential equation

yields

2c2 + 20c0 + (6c3 + 12c1)x+
∞∑

k=2

[(k2 − 9k + 20)ck + (k + 1)(k + 2)ck+2]x
k = 0.

Hence c2 = −10c0, c3 = −2c1 and ck+2 = −(k − 4)(k − 5)

(k + 1)(k + 2)
ck, for k = 2, 3, 4, . . .. Thus

cn = 0 for n > 6. But c4 = −1

2
c2 = 5c0, c5 = − 1

10
c3 =

1

5
c1. Therefore both solutions of

the differential equation are polynomials

y(x) = c0(1− 10x2 + 5x4) + c1(x− 2x3 +
1

5
x5).

6. (a) Using the method of separation of variables determine the function u(x, t) which obeys

uxx + 2u = tut,

u(0, t) = u(π, t) = u(x, 0) = 0.

(b) Expand the function f(x) = sin x, 0 < x < π as a Fourier cosine series of period 2π. Sketch the
graph of the sum of this series.



Solution:

(a) Let u(x, t) = X(x)T (t). Then plugging u into the equation gives
X ′′

X
+ 2 = t

T ′

T
,

hence,
X ′′

X
= λ,

tT ′

T
= 2 + λ.

Consider X ′′ = λX with boundary conditions X(0) = X(π) = 0. Then λ = −n2 with
n = 1, 2, 3, . . . implies

Xn = Bn sin (nx).

tT ′ = (2 − n2)T gives Tn(t) = t2−n2
. Thus, un(x, t) = Bnt

2−n2
sin (nx). Initial condition

T (0) = 0 implies n = 1 and
u(x, t) = B1t sin x,

where B1 is arbitrary.

(b) Even extension of f is Ef (x) =

{
sin x, 0 < x < π,

− sin x, −π < x < 0
. For Ef (x), bn = 0 for

n = 1, 2, 3, . . .. As Ef (x) =
1

2
a0 +

∞∑
n=1

an cos (nx) with an =
2

π

∫ π

0

sin x cosnxdx one finds

that a0 =
4

π
, a1 = 0 and an = −2[1 + (−1)n]

π(n2 − 1)
for n = 2, 3, . . .. Thus

f(x) =
2

π
− 2

π

∞∑
n=2

[1 + (−1)n]

n2 − 1
cosnx

=
2

π
− 4

π

∞∑
k=1

cos 2kx

4k2 − 1
.
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1)Without using Laplace transforms solve the initial value problem :

x′1 = −3x1 − 4x2

x′2 = x1 − 7x2

x1(0) = 2 , x2(0) = 3.

Solution:

−→
x′ = A−→x where A =

[
−3 −4
1 −7

]
, det(A− rI) = (r + 5)2 = 0

then we have r1 = r2 = −5a repeated real eigenvalue. (A + 5I)
−→
ξ =

−→
0 ⇒

−→
ξ =

[
2
1

]
−→x (1) =

[
2
1

]
e−5t. Let (A + 5I)−→η =

−→
ξ up to a multiple of

−→
ξ , −→η =

[
1
0

]
.

−→x (2) =
−→
ξ te−5t +−→η e−5t Then −→x (2) =

([
2
1

]
+

[
1
0

])
e−5t.

{−→x (1),−→x (2)}is a fundamental set gen. soln.−→x = c1
−→x (1) + c2

−→x (2)

=

(
c1

[
2
1

]
+ c2t

[
2
1

]
+ c2

[
1
0

])
e−5t.

−→x (0) =

[
2c1 + c2

c1

]
=

[
2
3

]
⇒ c1 = 3 , c2 = −4.Unique solution to this initial value

problem is therefore,

−→x =

[
2
3

]
e−5t −

[
8
4

]
te−5t.

2)Given the differential equation:

x2(1− 2x)y′′ + x(4x− 5)y′ + (9− 4x)y = 0,

a) Locate and classify all of its singular points in the finite plane.

b) Find a series solution about the point x = 0. Determine the general term and the radius
of convergence of this series. Describe the nature of the second, linearly independent series
solution about the same point but do not compute its coefficients.

Solution:

a) p(x) =
(4x− 5)

x(1− 2x)
, q(x) =

(9− 4x)

x2(1− 2x)
⇒ x = 0 and x =

1

2
are regular singular points

All other finite points are ordinary points.



b) Let y =
∑∞

n=0 cnx
n+α Substituting the series for y in differential equation we get,

(α− 3)2xα +
∑∞

k=1[(k + α)(k + α− 6) + 9]ckx
k+α

+
∑∞

k=1[2(k + α− 1)(4− k − α)− 4]ck−1x
k+α = 0

⇒ α1 = α2 = 3 , ck =
2(1 + k)

k
ck−1 , k = 0, 1, 2, . . . ⇒ c1 = 4c0 ,

c2 = 22(3)c0 , . . . ck = 2k(k + 1)c0 for k = 0, 1, 2, . . . therefore

y1 = x3

∞∑
n=0

2n(n + 1)xn. R = lim
n→∞

∣∣∣∣ cn

cn+1

∣∣∣∣ =
1

2
.

Since the two exponents are the same , the second solution must have the form

y2 = y1 ln x + x3

∞∑
n=1

bnx
n.(it turns out that bn = −2nn for n = 1, 2, 3, . . .)

3)

a) A function y(t) is known to satisfy the initial value problem :

y′′ + y = (t− 3)u3(t), y(0) = y′(0) = 0.

Compute y
(π

2

)
and y

(π

2
+ 3

)
.

Solution:

Let Y (s) = L[y(t)] then we have the differential equation as (s2 + 1)Y =
e−3s

s2

Y (s) =
e−3s

s2(s2 + 1)
= e−3s

[
1

s2
− 1

(s2 + 1)

]
⇒ y(t) = L−1[Y (s)]

= u3(t)[(t− 3)− sin(t− 3)] since u3(t) = 0 for t < 3 , y
(π

2

)
= 0.

y
(π

2
+ 3

)
=

π

2
− sin

(π

2

)
=

π

2
− 1

b) Solve the integrodifferential equation :

dy

dt
= cos(t) +

∫ t

0

y(τ) cos(t− τ)dτ , y(0) = 1.

Solution:

Take Laplace transform and use convolution theorem. Let Y (s) = L[y(t)]

sY − 1 =
s

(s2 + 1)
+ Y

s

(s2 + 1)
s3

(s2 + 1)
Y = 1 +

s

(s2 + 1)

Y (s) =
s2 + 1

s3
+

1

s2

Y (s) =
1

s
+

1

s2
+

1

s3

y(t) = L−1[Y (s)] = 1 + t + t2
1

2



4)Find the general solution of the following equations:

a) (t+y)dy+dt=0

Solution:

This is a linear equation for t(y):
dt

dy
+ t = −y, (tey)′ = −yey Then tey = ey − yey + c, t = 1− y + ce−y where c ∈ R

b) y′′ − 2y′ + y = 12
et

t5
, t > 0

Solution:

Use either reduction of order or variation of parameters. Since et is a homogeneous
solution let y = etv(t). Then we have v′′ = 12t−5, v = t−3 + c1 + c2t
y = c1e

t + c2te
t + t−3et

5)

a) Determine and sketch the graph of the Fourier series of the function:

f(x) = x, −4 ≤ x ≤ 4

b) Using the method of separation of variables find a solution of the heat equation

ut = α2uxx, 0 < x < L, 0 < t, L ∈ R

that satisfies the boundary conditions: ux(0, t) = ux(L, t) = 0, and matches the initial condi-

tion: u(x, 0) = 7 + 3 cos

(
2π

L
x

)
Solution:

a) f(x) = x, is odd, a0 = ak = 0, k = 0, 1, 2, . . .

bk =
2

4

∫ 4

0

x sin

(
kπ

4
x

)
=

8(−1)k+1

πk

x =
8

π

∞∑
k=1

(−1)k+1

k
sin

(
kπ

4
x

)
b) Let u(x, t) = T (t)X(x). Heat equation ⇒ T ′

T
=

α2X ′′

X
= k, T ′ = kT

X ′′ =
k

α2
X. Boundary conditions X ′(0) = X ′(L) = 0 k ≤ 0 to satisfy the boundary

conditions.Letting k = −α2β2 one gets Xn = cos
(nπ

L
x
)

. β =
nπ

L

⇒ Tn = Bne
−(nπ

L
α)2t, n = 0, 1, 2, . . . un = TnXn, u =

∞∑
n=0

un.

LetB0 =
1

2
a0, Bk = ak k = 1, 2, . . . Hence we get a Fourier series at t=0:

u(x, 0) =
1

2
a0 +

∞∑
k=1

ak cos

(
kπ

L
x

)
= 7 + 3 cos

(
2π

L
x

)
⇒ a0 = 14, a2 = 3 all other

an = 0 Therefore, u(x, t) = 7 + 3e−( 2π
L

α)2t cos

(
2π

L
x

)



6)

a) Show that if z satisfies the second order linear equation:

z′′ + p(x)z′ + q(x)z = 0 and z 6= 0, then y =
z′

z
must satisfy the Ricatti equation.

Solution:

y′ =
z′′

z
− (z′)2

z2
= −p(x)

z′

z
− q(x)− (z′)2

z2
= −p(x)y − q(x)− y2

y′ + y2 + p(x)y + q(x) = 0 a Ricatti equation

b) Let A =

(
λ 1
0 λ

)
where λ is an arbitrary real number. Determine exp(At).

Solution:

A=D+N , D =

(
λ 0
0 λ

)
, N =

(
0 1
0 0

)
, N2 = 0, DN=ND

eAt = e(D+N)t = eDteNt, eDt =

(
eλt 0
0 eλt

)
, eNt = I + Nt =

(
1 t
0 1

)
eAt =

(
eλt 0
0 eλt

) (
1 t
0 1

)
=

(
eλt teλt

0 eλt

)
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1. Using Laplace transforms solve the initial value problem:

x′1 = −x1 − 3 x2 ,
x′2 = 3 x1 + 5 x2 , x1(0) = 2, x2(0) = −3.

Solution:

Let u(s) = L[x1] , v(s) = L[x2].
The Laplace transform of the system gives

(s + 1)u + 3v = 2
−3u + (s− 5)v = −3

⇒ u =
2s− 1

(s− 2)2
=

2

s− 2
+

3

(s− 2)2
,

v =
3− 3s

(s− 2)2
=

−3

s− 2
− 3

(s− 2)2
.

⇒ x1(t) = L−1[u] = (2 + 3t)e2t ,
x2(t) = L−1[v] = −3(1 + t)e2t ,



2. a) Determine and sketch the graph of the Fourier series of the function:

f(x) =

{
0 −1 < x < 0 ,
x 0 ≤ x < 1

b) Using the results of (a) evaluate the series
∞∑

n=1

1

(2n− 1)2
.

Solution:

(a)

f(x) =
1

2
a0 +

∞∑
k=1

(ak cos kπx + bk sin kπx)

a0 =

∫ 1

−1

f(x)dx =

∫ 1

0

x dx =
1

2

ak =

∫ 1

−1

f(x) cos kπx dx =

∫ 1

0

x cos kπx dx =
(−1)k − 1

π2k2

bk =

∫ 1

−1

f(x) sin kπx dx =

∫ 1

0

x sin kπx dx =
(−1)k+1

πk

Since ak = 0 for k = even, we can write

f(x) =
1

4
+

∞∑
n=1

(−2)

π2(2n− 1)2
cos(2n− 1)πx +

∞∑
n=1

(−1)n+1

πn
sin nπx.

-

6
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(b)

f(x) is piecewise smooth.

At x = 0 series converges pointwise to f(0) = 0 ⇒ 0 =
1

4
− 2

π2

∞∑
n=1

1

(2n− 1)2

Therefore,
∞∑

n=1

1

(2n− 1)2
=

π2

8



3. a) Find the general solution of
(x− 1) y′′ + 2 y′ = 0,

by constructing the two linearly independent power series solutions about the point x = 0.
Determine the radii of the convergence and identify the functions which are represented
by these series.

b) Find the general solution of the same equation by another method and show that the two
answers are the same.

Solution:

(a)

x = 0 is an ordinary point. Let y =
∞∑

n=0

cnx
n.

DE ⇒
∞∑

n=2

n (n− 1) cn (xn−1 − xn−2) +
∞∑

n=1

2n cn xn−1 = 0

⇒ 2 (c1 − c2) +
∞∑

k=1

(k + 1)(k + 2)(ck+1 − ck+2)x
k = 0

⇒ c2 = c1 , cn+1 = cn , n = 2, 3, . . .
⇒ c0, c1 arbitrary, cn = c1 for n = 2, 3, . . .

Therefore, y = c0 + c1

∞∑
n=1

xn, |x| < 1

Noting that
∞∑

n=0

xn =
1

1− x
for |x| < 1

y = (c0 − c1) + c1(1− x)−1

R1 = ∞ ,
R2 = 1

(b)

Let y′ = v. DE :
v′

v
=

−2

x− 1

⇒ v = y′ =
a2

(1− x)2
, y = a1 + a2(1− x)−1 a1, a2 ∈ R

Identify: a1 = c0 − c1 , a2 = c1



4. a) Find the Laplace transform of the function f(t) defined by

f(t) =

∫ t

0

(ex − 3e2x)(t− x)3dx

b) Let g(t) be the inverse Laplace transform of F (s) =
(1− e−3s)(1 + 4e−3s)

s2
.

Evaluate g(4) and g(7).

Solution:

(a)

Let g(t) = et − 3e2t , h(t) = t3 .
Clearly, f(t) = (g ∗ h)(t).
Convolution theorem gives

L[f(t)] = L[g]L[h]

=
6

s4

[
1

s− 1
− 3

s− 2

]
.

(b)

F (s) =
1

s2

[
1 + 3e−3s − 4e−6s

]
g(t) = L−1[F (s)] = t + 3u3(t)(t− 3)− 4u6(t)(t− 6)

⇒ g(4) = 4 + 3 = 7 ,
g(7) = 7 + 3(4)− 4 = 15.

5. a) Find the general solution of y′′ − 16y = 8 sin2 x.

b) Prove that the Wronskian W [y1, y2] of the two solutions y1, y2 of L[y] = y′′ + p(x)y′ +
q(x)y = 0, where p(x) and q(x) are continuous on an interval I, satisfies the Abel’s
formula :

W = c exp(−
∫

p(x)dx), c ∈ R.

Solution:

(a)

yH = c1e
4x + c2e

−4x , c1, c2 ∈ R
8 sin2 x = 4(1− cos 2x).
Let yp = A + B cos 2x.

DE ⇒ −16A− 20B cos 2x = 4− 4 cos 2x.

⇒ A = −1

4
, B =

1

5

General solution : y = yH + yp = c1e
4x + c2e

−4x − 1

4
+

1

5
cos 2x



(b)

W = y1y
′
2 − y2y

′
1 , W ′ = y1y

′′
2 − y2y

′′
1

W ′ = y1(−py′2 − qy2) + y2(py
′
1 + qy1)

= −p(y1y
′
2 − y2y

′
1) = −p W

⇒ ln |W | = −
∫

p(x)dx + k , k ∈ R

⇒ W = c exp(−
∫

p(x)dx). (c = ±ek)

6. a) Using the method of separation of variables solve the partial differential equation :
uxy − u = 0.

b) Find the solution of the initial value problem: y′ = 2(3x + y)2 − 1 , y(0) = 1.

Solution:

(a)

Let u(x, y) = X(x)Y(y).

DE : X′Y′ = XY
X′

X
=

Y
Y′ = k

X′ − kX = 0 Y′ − 1

k
Y = 0

⇒ X(x) = (const.)ekx , Y(y) = (const.)ey/k

u(x, y) = Cekx+y/k , (k, c ∈ R)

(b)

Let u = 3x + y

⇒ y′ = u′ − 3 = 2u2 − 1 ; u′ = 2(u2 + 1) separable

⇒ tan−1 u = 2x + c. y(0) = 1 ⇒ u(0) = 1

⇒ c = tan−1 1 =
π

4
,

tan−1(3x + y) = 2x +
π

4
,

y = tan(2x +
π

4
)− 3x.
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1. Let A =

(
−5 1
−2 −2

)
. Find the general solution of the system −→x ′ = A−→x without using

Laplace transforms and show that as t →∞, −→x → −→
0 .

Solution:

Let −→x =
−→
ξ ert so that A

−→
ξ = r

−→
ξ .

p(r) = det(A− rI) =

∣∣∣∣ −5− r 1
−2 −2− r

∣∣∣∣ = r2 + 7r + 12 = 0.

p(r) = (r + 3)(r + 4) = 0 ⇒ r1 = −3, r2 = −4
Since we have two distinct eigenvalues we shall have two linearly independent eigen-
vectors.
(A− r1I)

−→
ξ (1) = (A + 3I)

−→
ξ (1) = 0, (A− r2I)

−→
ξ (2) = (A + 4I)

−→
ξ (2) =

−→
0 .

−→
ξ (1) =

(
a1

a2

)
,
−→
ξ (2) =

(
b1

b2

)
,(

−2 1
−2 1

) (
a1

a2

)
=

(
0
0

)
,

(
−1 1
−2 2

) (
b1

b2

)
=

(
0
0

)
⇒ a2 = 2a1, b2 = b1. Choose a1 = 1, b1 = 1. Then

−→x (1) =
−→
ξ (1)er1t =

(
1
2

)
e−3t, −→x (2) =

−→
ξ (2)er2t =

(
1
1

)
e−4t is a fundamental set of

solutions.

General solution −→x (t) = c1
−→x (1) + c2

−→x (2) = c1e
−3t

(
1
2

)
+ c2e

−4t

(
1
1

)
.

Note that lim
t→∞

−→x (1)(t) =

(
0
0

)
, lim
t→∞

−→x (2)(t) =

(
0
0

)
.

Therefore, lim
t→∞

−→x (t) =

(
0
0

)
.



2. (a) Solve the initial value problem: (2x + 3)y′ = y + (2x + 3)
1
2 , y(−1) = 0.

Solution:

D.E. is linear and µ(x) = (2x + 3)−
1
2 is an integrating factor:[

(2x + 3)−
1
2 y

]′
=

1

2x + 3
, (2x + 3 ≥ 0).

(2x + 3)−
1
2 y = 1

2
ln (2x + 3) + c

y(−1) = 0 ⇒ c = 0. Therefore

y =
1

2
(2x + 3

1
2 ) ln (2x + 3)

(b) Find the general solution of 2x2y′′ + 10xy′ + 8y = x3 for x > 0.

Solution:

This is a nonhomogeneous Euler equation. Let x = eu.

xy′ =
dy

du
,

x2y′′ =
d2y

du2
− dy

du
and DE becomes

2
d2y

du2
+ 8

dy

du
+ 8y = e3u,

d2y

du2
+ 4

dy

du
+ 4y =

1

2
e3u

y(u) = yH(u) + yP (u).
Characteristic equation: r2 + 4r + 4 = (r + 2)2 = 0
⇒ {e−2u, ue−2u} is a fundamental set of homogeneous solutions.
yH = c1e

−2u + c2ue−2u. Let yP (u) = Ae3u

DE ⇒ (9A + 12A + 4A)e3u = 1
2
e3u ⇒ A =

1

50
.

y = c1e
−2u + c2ue−2u + 1

50
e3u

y(x) = c1x
−2 + c2x

−2 ln x +
1

50
x3.



3. Given the equation xy′′+3y′−y = 0 determine the two exponents at the point x = 0. Prove that
the two Frobenius series constructed about x = 0 with these exponents are linearly dependent.
Describe the nature of the second linearly independent solution about the same point but do
not determine it completely.

Solution:

x = 0 is a regular singular point. Let y =
∑∞

n=0 cnx
n+α.

DE ⇒
∞∑

n=0

(n + α)(n + α− 1)cnx
n+α−1 +

∞∑
n=0

(n + α)3cnx
n+α−1 −

∞∑
n=0

cnx
n+α = 0.

∞∑
n=0

(n + α)(n + α + 2)cnx
n+α−1 −

∞∑
n=0

cnx
n+α ⇒

α(α + 2)c0x
α−1 +

∞∑
k=0

[(k + α + 1)(k + α + 3)ck+1 − ck] x
k+α = 0

Indicial eqn.: α(α + 2) = 0. Exponents: α1 = 0, α2 = −2.
(k + α + 1)(k + α + 3)ck+1 − ck = 0, k = 0, 1, 2, ...

For α = α1, the recurrence relation gives cn =
2c0

n!(n + 2)!
, n = 1, 2, ...

c0 6= 0, arbitrary.

⇒ y1 = c0

∞∑
n=0

2

n!(n + 2)!
xn, converges for |x| < ∞.

For α = α2 = −2, recurrence relation is (k − 1)(k + 1)ck+1 − ck = 0.

c1 = 0 ⇒ c0 = 0 and for n ≥ 2, cn =
2c2

n!(n− 2)!
.

c2 is arbitrary. Thus y2 = c2

∞∑
n=2

2

n!(n− 2)!
xn−2 = c2

∞∑
k=0

2

k!(k + 2)!
xk

Thus c0y2 = c2y1 and y1,y2 are linearly dependent.
Note that α1 − α2 = 2. Since the two exponents differ by an integer,

y2 = Cy1 ln x +
∞∑

n=0

bnx
n+α2 , b0 6= 0 is the second solution of the fundamental set and

although C can, in general be zero, in this problem is not zero.



4. (a) Solve the initial value problem: y′ + 2y = f(t), y(0) = 3, where f(t) = 0 is t < 1 and
f(t) = 5 if t ≥ 1.

Solution:

f(t) = 5u(t).

Taking the Laplace transform of the DE gives:

(s + 2)Y (s) = 3 + 5e−s, Y (s) = L{y(t)}.

Y (s) =
3

s + 2
+

5e−s

s(s + 2)
=

3

s + 2
+

5

2

[
e−s

s
− e−s

s + 2

]
y(t) = L−1{Y (s)} = 3e−2t + 5

2

[
1− e−2(t−1)

]
u(t)

(b) Using the method of seperation of variables reduce the partial differential equation

∂

∂x
(ax

∂u

∂x
) =

∂2u

∂t2
, (a ∈ R),

to two ordinary differential equations. Classify all finite points of these differential equa-
tions but do not construct the solutions.

Solution:

Let U(x, t) = X(x)T (t). DE ⇒ T
d

dx
(ax

dX

dx
) = X

d2T

dt2

⇒ T ′′

T
=

(axX ′)′

X
= k (a constant)

⇒ T ′′ − kT = 0

(axX ′)′ − kX = 0 ⇒ axX ′′ + aX ′ − kX = 0

T ′′ − kT = 0 ⇒ all finite points are ordinary points.

X ′′ +
1

x
X ′ − k

a
X = 0, a 6= 0.

For a 6= 0, x = 0 is a regular singular point.

If a = 0, k = 0 but the PDE does not fit the x-dependence:

Utt = 0, U(x, t) = f(x)t + g(x).

(f ,g are arbitrary functions.)



5. (a) Determine Fourier series expansion of the function f(x) = x2 + x + 3, x ∈ [−π, π].

(b) Using the result of part (a) prove that
∞∑

k=1

(−1)k+1

k2
=

π2

12
. Justify your proof.

Solution:

a0 =
1

π

∫ π

−π

f(x)dx =
1

π

[
x3

3
+

x2

2
+ 3x

]π

−π

=
2π2

3
+ 6

ak =
1

π

∫ π

−π

f(x) cos kxdx =
1

π

∫ π

−π

x2 cos kxdx,

since x cos kx is odd and 3 is orthogonal to cos kx for k ≥ 1.

Integrating by parts twice gives ak =
4

k2
(−1)k, k = 1, 2, 3, ...

bk =
1

π

∫ π

−π

f(x) sin kxdx =
1

π

∫ π

−π

x sin kxdx,

since x2 sin kx is odd and 3 is orthogonal to sin kx for k ≥ 1.

Integrating by parts gives bk =
2

k
(−1)k+1.

f(x) =
1

2
a0 +

∞∑
k=1

(ak cos kx + bk sin kx)

= 3 +
π2

3
+

∞∑
k=1

(
4(−1)k

k2
cos kx +

2(−1)k+1

k
sin kx

)
Obviously, f and f ′ are continuous in [−π, π].
Therefore Fourier series converges pointwise:

f(0) = 3 +
π2

3
+

∞∑
k=1

(
4(−1)k

k2
cos (0) +

2(−1)k+1

k
sin (0)

)
Since f(0) = 3 and sin (0) = 0, cos (0) = 1, we get

π2

3
+ 4

∞∑
k=1

(−1)k

k2
= 0, and therefore

∞∑
k=1

(−1)(k+1)

k2
=

π2

12



6. (a) Let f(t) = [t], where [t] denotes the greatest integer ≤ t. Find the Laplace transform of
f(t).

Solution:

L{f(t)} =

∫ ∞

0

[t]e−stdt = 0

∫ 1

0

e−stdt + 1

∫ 2

1

e−stdt + 2

∫ 3

2

e−stdt + ...

= −1

s

[
e−2s − e−s + 2(e−3s − e−2s) + 3(e−4s − e−3s) + ...

]
= −1

s

[
−e−s − e−2s − e−3s − e−4s − ...

]
=

1

s

[
e−s + e−2s + e−3s + e−4s + ...

]
=

e−s

s

∞∑
n=0

e−ns

=
e−s

s

1

(1− e−s)

Hence L{f(t)} =
1

s(es − 1)

(b) Without using partial fractions find the inverse Laplace transform of the function:

F (s) =
s

(s− 3)(s2 + 9)

Solution:

F (s) =
s

(s− 3)(s2 + 9)
= L{e3t}L{cos 3t}.

By convolution theorem L−1{F (s)} = e3t ∗ cos 3t

=

∫ t

0

e3(t−τ) cos 3τdτ = e3t

∫ t

0

e−3τ cos 3τdτ

= e3t

[
1

6
e−3τ (sin 3τ − cos 3τ)

]t

0

integrate by parts twice

= e3t

[
1

6
e−3t(sin 3t− cos 3t) +

1

6

]

=
1

6

[
e3t + sin 3t− cos 3t

]
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