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(a) Find the permutation matrix P for the PA given above.

1
. Let A= {0
3

S = N

} and PA =

S = W

(b) Find the matrix K which only adds five times the third row of A tothe
firstrow of A when KA is considered.
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K = o | Q |-
g O |

(c) Let B= ATA . Find the inverse of B if it exists.
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1. Prove the following statements:
(a) Let A and B be symmetric matrices. If AB is also symmetric then AB = BA.

Solution:

A and B are symmetric means A" = A and B” = B. Also (AB)" = AB. Now using
all these:

AB = (AB)' = B"A" = BA.

Proof is done.

(b) If AB = BA and B is invertible then AB™! = B~ A.

Solution:

We are given AB = BA and B is invertible. Multiply this identity from both sides by
B! to obtain:

B 'ABB '=B 'BAB !« B 'A=AB .

Proof is done.

10 1 10 0
2. et A=]01 -1 |andB=|1 1 -1
1 2 0 01 0

(a) Show that A and B are invertible matrices by finding their inverses explicitly.

Solution:

We construct the augmented matrices: [A : I] and [B : I| and apply elementary row

operations:
10 1]1 0 0 10 1| 100
[AI] — 01 =110 1 0 er: —ri+r3—r3 01 —1 01 0 eg: —2ro+r3—T3
12 0[/00 1 02 —1|-1 0 1
10 1] 1 00 1 00| 2 2 -1
- 1 — 010%010—1—11
00 1|-1 -2 1] T o011 -2 1
Hence we have found that:
2 2 -1
A= -1 -1 1

-1 =2 1



10 0100 10 0] 100
B:I = |1 1 —1|0 1 0| &zt by g q|—p 1 o | oo,
(01 0[0 0 1 01 0| 001
10 0] 1 00 100[1 00
— o1 —1/=1 1o BT L1 00 01
00 1| 1 -1 1 00 1/1 -1 1
Hence we have found that:
1 00
Bl'=|0 01
1 -1 1

Since A and B are row equivalent to the 3 x 3 identity matrix, they are invertible matrices.

(b) Express A and B as a product of elementary matrices (Do not perform explicit matrix multi-
plication, but perform inversions, transpositions etc. whenever necessary).

Solution:

Let E1, Ey, E5 and E4 be elementary matrices corresponding to the operations ey, ey, €3
and ey, respectively. Similarly let F';, F'5 and F'3 be elementary matrices corresponding
to the row operations fi, fo and f3, respectively. Then in part (a) we have shown that:
E,E;E;E A =1 and F3F,F B = I. Elementary matrices are invertible and product
of invertible matrices is invertible, which let us write:

A = (E.E;E.E,\)'=E'E;'E;'E;"

1 00 1 00 1 01 10 0
= 010 010 010 01 —-11,
1 01 0 21 0 01 00 1

and also:

1 00 100 10 0
= 1 10 010 01 -1
0 01 011 00 1

Now A and B are written as a product of elementary matrices.

In this solution we utilized the practical way of inverting elementary matrices.

(c) Express (AB)™! as a product of elementary matrices (Do not perform explicit matrix multipli-
cation, but perform inversions, transpositions etc. whenever necessary).

Solution:

First we note (AB)™' = B"'A~". But inverses of A and B are just product of elemen-



tary matrices in the application order:

(AB)™!
[1 0 0] [1
= 011 0
(00 1]]0
1 0 0] [1
X 01 1 0
(00 1]]0
3 21
} ) 1 7
3. Consider the 4 x 5 matrix A = 5 14
6 42

0
1
-1

o = O

0

—1

0

—1

— B'A'=F,F,F,E,E;E,E,

0 1 00
0 -1 10
1| 00 1]
1171 0 0] 1 00
0 0 10 010
1|0 -21][-101
9 0
-2 -1
6 1
13 0

(a) Find all solutions @ of the homogeneous linear system Ax = 0 by obtaining the row-reduced
echelon matrix R of A. What is the dimension of this solution space?

Solution:

By elementary row operations we pass to the unique row-reduced echelon matrix R of A:

321 0 9 O 17 0 3 0
A _ 1 7 —1 —2 —1 T‘1/3*>’f‘1 1 7 —1 —2 —1 —r1+ro—r2
214 0 6 1 214 0 6 1 .
| 6 42 -1 13 0 6 42 -1 13 0 —bridra—ra
(17 0 3 0 T 7 0 30 170 30
O 0 _1 _5 _1 —To—T9 O O 1 5 1 ro+r4—r4 O 0 1 5 1
00 0 0 1 00 0 01 00001
00 -1 =5 0 00 -1 =50 00001
70 30
—rat+ra—r, | O 0 1% 5 0 R
—r3+r4—ry 0 0 O 0 1* N '
0 00 0O
There are 3 pivots (leading 1s). If we rewrite the linear system Ax = 0 in its row
equivalent form Rax = 0 and back substitute the variables, we get:
1+ 7%2 + 3134 = 0,
T3 + 51‘4 = 0,
5 = 0.

Choosing o = s and x4 = t as free variables, the solutions of the homogeneous system
are vectors of the form:

—T7s — 3t -7 -3
s 1 0
—5t =35 O+t| —5

t 0 1

0 0 0



This shows dimension of the solution space of the homogeneous system associated with
A has 2 free parameters and hence its dimension is 2 = dim Null(A).

(b) Find a basis for the column space of A.
Solution:

In R we see that 1st, 3rd and 5th columns are linearly independent because they contain
the pivot elements. Thus, the set of corresponding columns of A:

3 0 0
1 -1 -1
2 |7 01’ 1
6 -1 0

constitutes a basis for the column space of A.

(c) Find a basis for the row space of A.
Solution:

The last row is a zero row. Hence the first three rows of R (or of A) form a basis for the
rOwW space:

{17030, [00150], 0000 1]}.

(d) Regarding the matrix A given in this question, fill in the blanks in the following statements
explicitly:

eRow(A) is a _3 dimensional subspace of the Euclidean space RS .

eCol(A) is a 3 dimensional subspace of the Euclidean space R .

eRank(A) equals 3 .

e Ax = b has a solution if b is a linear combination of the basis vectors of Col(A) .



4. Let V5 denote the vector space of polynomials of degree at most 2, and V3 denote the vector space
of polynomials of degree at most 3.
We define a transformation 7" : V, — V3 by:

a a
T(ao + a1z + axz®) = apx + ?le + 323:3.

(a) Show that 7" is a linear transformation.
Solution:

Take two polynomials in Va: p(z) = ag + a1z + asz? and q(x) = by + bix + byx? and a
constant ¢ € R.

(1) T(p(x)+q(z)) = (ap+bo)x+ a1—+blx2 a2—+b2x3

2 3
b b
= aor+ %JEQ + %x?) + bz + 51332 + §2x3 =T(p(x)) +T(q(x)).

(@)  T(ep(z)) = (cag)z + (Cgl>a:2 + (C§2>x3 =c <ao$ + %xQ + %333) = T (p(x)).

Hence T is linear.
Side Info: Note that T is an integration operator, but not indefinite. If it were so, i.e.

T(p(x)) = / p(z) dz, then T(0) = constant, not necessarily zero. Instead, the correct

integral form of 7" is: T'(p(x)) = / p(t) dt so that this integration constant is forced to
0

be zero.

(b)[5] By finding their elements, describe the sets U = {p(x) € V4 such that T'(p(z)) = 0} and
W = {p(z) € V4 such that T'(p(x)) = 1}.

Solution:
T(p(x)) = apx + %xz + 2243 = 0 entails ap = a; = ay = 0 by the polynomial identity.
Hence U = {0}.
T(p(x)) = apx + M2 1 2203 — 1 cannot be satisfied for all  for any choice of the

coefficients. Namely, no element in V5 has the image 1: W = &.



(c) Let the set B = {1+, x+ 2% 1+ 2?} form a basis for V4 (Do not show this). Find the matrix

A of T with respect to the basis B.
Solution:
We simply find the images of each basis element via the transformation rule:

T(l+z) = x+a?/2
T(x+2%) = 2*/2+23/3
T(1+2?) = x+23/3

and express them in terms of the standard basis {1, x, x?, 3} of V3 as coordinate vectors:

T(1+z) = [011/20],
T(x+22) = [001/21/3],
T(1+2%) = [0101/3].

We now place them column-wise to find A to be:

0 0 0

1 0 1
A= 1/2 1/2 0

0 1/3 1/3

as a 4 X 3 matrix.
(d) Find the image of ¢(z) = 3 + 2z + 2 under T by using the transformation matrix A.
Solution:

We first need to write ¢(x) = 3 + 2z + 2? in the basis B. This is to find numbers ¢;, ¢,
and c3 so that:

3+2r+2° =ci(1+2)+ca(r+2°) +e3(1+2%) = (c1 +c3) + (c1 + o) + (¢ + c3)2”

This is true for all z, hence is a polynomial identity. Comparing the coefficients of left-
and right-hand sides, we reach a system of three nonhomogeneous linear equations:

c1+c3 = 3,
C1+C = 2,
Co+cC3 = 1.

This system can be solved by any means, for instance subtracting 3rd equation from the
2nd equation: ¢; — c3 = 1. Adding this up to the 1st equation: ¢; = 2. Then ¢; = 0 and
c3 = 1. Thus, ¢(x) has the coordinate vector [2 0 1] in the basis B.

Now, since T'(¢(x)) is a matrix multiplication, we have:

0 0 0 9 0
Tloe) = A0 = | oy o || 0] =]
0 173 1/3 | L} 1/3

This is to say that:
T(q(z)) = 3z + 2* + 2°/3.
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1.) Let V be the subspace of R* spanned by the vectors:

W W W N

Determine the dimension and find a basis for V.
Solution:

Note that z + y = z and y is not a multiple of . It follows that {x,y} is a basis for V'
and dim V' = 2.

2.)
1 00
() Let A= |1 1 0 [|. Determine AT and find A~ if it exists.
7T -1 2
Solution:
11 7
AT=10 1 -1
0 0 2
To find the inverse, we apply Gauss-Jordan procedure
1 001 00 Ryt Ry—R 1 00| 100
110010—7R+R—>R 0O 1 0/-1 00
7 -1 200 1 PPl 0 -1 2]-7 0 1
[1 0 0] 100
R2+R3—>R3 0 1 0/—-1 1 0
|0 0 2]-8 11
R 1 00| 100
73_>R3 0 1 0/-11 0],
(0 001|411
1
and we find A=' = | —1

N — O
v o O



(b) Let A be an m x n matrix and B be and n X m matrix and suppose n < m. Prove that the
m X m matrix C' = AB is not invertible.
Solution:

If C is invertible, then rank C' = m. On the other hand, Row(C) C Row B, therefore
dim Row C' < dim Row B < n. This implies m = rank C' = dim Row C' < n, which is a

contradiction.
1 00 1 0145 10
3.) Suppose A=|1 1 0 01 22 1]|andb=| 15
7T -1 2 00011 85
(a) What is the rank of A7 Justify your answer.

Solution:
The matrix A is given in the LU form. Since it has 3 pivots, the rank of A is 3.
(b) Find a basis for the nullspace of A.

Solution:

The nullspaces of A and U are the same, if U is obtained by performing elementary row
operations on A. So we want to find the solution set of Ux = 0, where

1 01 45
U=1012 2 1
00011
T
T2
Let x = | x3 |. Then z3 and x5 are the free variables. Let x3 = ¢, x5 = w. From the
Ty
Ts
last row, we have x4 + w = 0, so x4 = —w. From the second row, we have xy + 2t +
2x4 +w = 0. Replacing x4 with —w, we get o = —2t + w. From the first row, we have
r1 + x3 + 4wy + 5xs = 0. It follows that x1 = —t — w. So the solution set is
-1 -1
-2 1
x=1 1| +w 01, t,weR.
0 —1
0 1
-1 -1
-2 1
So, the set 11, 0 is a basis for the nullspace of A.
0 _



(c) Find the complete solution to Az = b.

Solution:

We have already found the homogenous solution in part (b). We only need to find a
particular solution. We set all the free variables to 0. We first solve Lc¢ = b, and then

1 00 c1 10
Le=|11 10 co | =1 15
7 =1 2 C3 85

We can easily find by forward substitution that ¢ =

We now solve for

k
}

T
10145 Ty [ 10
Uec=101 2 2 1 x3 5
00011 x4 | 10
Ts
with x3 = x5 = 0. By back substitution, we find
-30
—15
X = 0
10
0
as a particular solution, so the general solution is
—-30 -1 -1
—15 —2 1
X = 0|+t 1| 4w 0, t,wel.
10 0 —1
0 0 1

4.)
(a)Determine whether the following matrices have the same row spaces:

1 -1 -1

a-la s aloe-[L1 3]
3 -1 3

Solution:



Let us perform row operations on the given matrices:

1 -1 -1 AR\ ARy Ry 1 -1 -1
A=14 -3 -1 3R+ ReR o 1 3
3 -1 3 PETE Lo 20 6
[1 -1 —1]
—2R2+R3—>R3 0 1 3
0 0 0]
1 0 2]
—R2+R1—>R1 01 3
| 0 0 0
11 5 11 5]
B—{2 3 13} —2R1+Ry— Ry {O 13|
10 2]
—R2+R1—>R1 |: 01 3 _
Hence we see that A and B have exactly the same row spaces.
1 -2 1 2 1
(b)LetA=|1 1 —1 1 |[andb= | 2 |. Determine whether b belongs to the column space
1 7 =5 -1 3

of A. Does the linear system Ax = b have at least one solution? Justify your answers.

Solution:

Let us perform Gaussian elimination on the augmented matrix [A : b]:

1 -2 1 2|1 Ryt Ry Ry 1 -2 1 2|1
1 1 -1 1|2 —Ry+Rs R, 0 3 -2 —-1]1
1 7 -5 1|3 | 0 -6 —3|2
1 — 1 2] 1

—3R2—|—R3—>R3 0 3 —2 -1 1

(0 0 0 0]-1

Since the system is inconsistent, b is not in the column space of A, and there exists no
solution.
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1. Let T : R® — R3 be defined by T'(z,y, 2) = (z + 2y + 2,2 + vy, 2y + 2).

) (5pnts) Write down what we must show to prove that 7" is a linear transformation
b) (5pnts) What is the matrix representing this transformation in the standard basis for R3.
) (10pnts) Show that 7" is non-singular and find its inverse transformation!

Solution:

a) Must show T'(a(x1,y1, 21) + B(22, y2, 22)) = &I (x1, y1, 21) + BL (22, Y2, 22).

1 21
b) Ti = (1,1,0),T7 = (2,1,2), Tk = (1,0,1) implies matrix M = | 1 1 0
0 21
1 21 a 1 2 1 a
c) 110 b | =10 -1 -1 b—a ; 3 pivots imply non-
0 21 c 0 0 -1 a—2b+c
singularity : 7" is invertible.
—2a+4b—c -2 4 -1 a -2 4 -1
X = 2a3b+ ¢ 2 =3 1 b | implies M~ = 2 =3 1
—a+2b—c —1 2 —1 c -1 2 -1
and correspondingly 71 (z,y, 2) —2x 4+ 4y — z,2x — 3y + z,—x + 2y — 1).
2
2. (30pnts) Show that the set {| 3 |, 1 } is a basis for the space spanned by the set
9 _
1 5
{121, 8], 4
3 7 1
Solution:
2 1 0 2 1 c
Linear independence: ¢; | 3 |+ 1 = 0 | implies | 3 1 ( cl ) =
2 ~1 0 2 -1 2
0 2 1 . 0
0 | implies [ 0 —1/2 ( cl ) = 0 | implies ¢; = ¢ = 0.
0 0 -2 2 0

Linear independence of the other 3 vectors:



1 5 3 a 1 5 3 a 1 5
2 8 14 b | implies| 0 —2 -2 b—a ,s01 2 Jand | 8
3 71 c 0 0 0 ba —4b+ ¢ 3 7

form a basis, i.e. dim =

15 a 1 5 a a
2 8 b | implies | 0 —2 b—a ,s0 | b | is in the range
3 7 c 0 0 S5a —4b+ ¢
< da—4b+c =
2 1
Since | 3 | and 1 satisfy ba — 4b + ¢ they are in the span and sine they are
2 -1
linearly independent and dim = 2 they must form a base for the same space.

a) (20pnts) Find basis for the 4-fundamental subspaces associated with M.

b) (5pnts) Why does the system Az = (1,1,1)” has no solution? Explain!

Solution:
1 2 2 3 a 1 2 2 3 a
2 41 3 b | implies | 0 0 -3 -3 b—2a
4 8 2 6 00 0 O c—2b
—1
Ty =8,03=—82Ty =121 =—-35+ 25 — 2t = —s — 2t implies x = s _01 +
1
—2
1
t 0
0
1
N(A 0 and n =2
1 0 nd n = 2.
0
Row Space = ( ﬁ ﬁ ((1,2,2,3),(2,4,1,3)) and r = 2.
1 2
Column Space = (C1,C3) = ([ 2 |,| 1 |)and r=2.
4 2
a

Co-Kernel: AZ = b has solutions & ¢ —2b =0 < 0a + 2b+ 1lc =



a 0

0« (02 —1)f b ] =0 SoCoKermel= ([ 2 |[)and Corank =1
c —1
(241 =3).
You can also get this form 2Ry, — R3 = 0.
2 2 2 T 12
4. (25pnts) Use LU-decomposition to solve | 4 7 7 y | =1 24
6 18 22 z 12

Solution:

i)

;so LUx =10

=~

S O N
S W N
W N

12

T 12
y | = 0 impliesz:—%:—e},y:_z:

1 0

2 0

3 1

10 Yo = 24 | implies y1 = 12, yo = 24 — 24 = 0,
4 1

( z —24
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1. For which value(s) of the real number k, does the following linear system has:

Li:x + vy — z =1
Lo:2x + 3y + kz 3
Ly:x + ky + 3z = 2

(a) a unique solution
(b) no solution

Solution:
First we find —2L; + L,

—2[, : 2z — 2y + 2z = 2
Ly : 2x + 3y + kz = 3

Adding side by side we get —2L1 + Ly :y+ (K +2)z =1
Next we find —L; + L3

Ly - -y 4+ z =1
Ly : » + ky + 32 = 2
Adding side by side we get —L1 + L3 : (k— 1)y +4z=1
So we have
Ly @z + y — z =1
2L, + Ly y + (k+2)z = 1
—Ll + L3 . (k — 1)y + 42’ = 1
Then we compute (k — 1)(2Ly + L) + (— Ly + L3)
—(k—=1)(2L1 + Ly) —(k=1)y — k=1)(k+2)z = 1-k
( L1 + Lg) (/{Z — 1)y + 4z = 1
Adding side by side we get (k — 1)(2Ly + L) + (—L1 + L3) : (—k* —k+6)z2 =2 —k

OR we have (k? 1)(2L1+L2)+( L1+L3) (6—1{3—]{?2)222—1{?
So, (k—1)(2L1 + Ly) + (L1 + L3) : B+ k)2 —k)=2—k

Therefore,
(a) If k # 2,k # —3, then the linear system has a unique solution.
(b) If k£ = —3, linear system has no solution.

2. For the vectors v; and vy in a vector space V', let W = Span{vy,ve}. Show that W is a subspace
of V.

Solution:
First we will show that Vu,w e W, u4+w € W
Let u,w € W be arbitrary, then u = c;v; + covy and w = c3vy + c4v9 for some ¢y, co, c3,c4 € R.

u+w = (1 + cav2) + (c3v1 + cav2) = (c1 + ¢c3)v1 + (c2 + ¢4)v2



by the axioms for vector spaces. So, u 4+ w € W.
Next we will show that Vu € W and Ve € R,we have cu € W.
Let uw € W and ¢ € R be arbitrary, then u = cyv; + cov9 for some ¢y, co € R.

cu = c(c1vy + cav9) = (cep)vy + (cez)vg

by the axioms for vector spaces. So, cu € W.
Hence, W is a subspace of V.

3. Let My,o be the vector space of all 222 matrices, and define T : Mo — Moo by T(A) = A+ AT.
Show that T is a linear transformation.

Solution:
First we will show that VA, B € My, T(A+ B) =T(A) +T(B)
Let A, B € My, be arbitrary. Then,

T(A+B)=(A+B)+ (A+ B =A+B+ A"+ B" = (A+ A")+ (B + B") =T(A) + T(B)

Next we will show that Ve € R and A € Ma,s, T(cA) = cT'(A)
Let ¢ € R and A € My, be arbitrary.

T(cA) = (cA) + (cA)" = cA+ cAT = c(A+ AT) = cT(A)

Hence, T is a linear transformation.

-3 6 -1 1 =7
4. Let A= 1 =2 2 3 —1 | be 3x5 matrix
2 -4 5 8 -4
(a) Find a basis for the row space of A.



(b) Find a basis for the column space of A.
(c) Find the dimension of the null space of A.
(d) Find the rank of A.

Solution:
13 =2 1/3 -1/3 7/3 1 -2 1/3 —1/3  7/3
ATEST L 2 2 3 1| BT g 0 5/3 10/3 —10/3
2 4 5 8 —4 2 -4 5 8 —d
12 23 1) 1 -2 23 -1 1 9 9
0 0 5/310/3 —10/3 | 775" L0 0 12 2|0 0 1
2 -4 5 8 2 —4 5 8 —4 0 01
1 -2 23 -1 L 201 3
TrATaeTs g g1 9 o | TFETETI L g g1 2 9
0 000 0 0 000 0

(a)A basis for row space R(A)is { [1 =2 0 1 3], [0 -0 1 2 —2]}

-3 1
(b)A basis for column space C(A)is{| 1 |,|1]}
2 1

(c) Dimension of Null space of A is dimN(A) =n—r=5—-2=3

(d) The rank of A is rank(A) = 2.

ro+r1—Tr1
—
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1 2 1
1.) a) Find c such that the following set of columns is a basis for R3: Tf, 1,1
—1 0 c
Solution:
1 21 1 2 1 1 2 1
A= |1 1 1| =22 g -1 o | 2T g -1 0 |, Hence
~1 0 0 2 et 0 0 c+1

c# —1,ie., Ve € R\ {—1} the given set of columns is a basis for R.
b) Is the set of polynomials S = {1 —z, 1 + z, 1 — 2%} linearly independent?
Solution:

Consider
a(l—z)+b(1+2z)+c(l—2*)=0

Then —cx? = 0 implies c=0. So a+b =0 and —a + b = 0 give that a = 0, b = 0. Thus
S is linearly independent.

c) If amatrix Aisn x (n— 1) and its rank is (n — 2) what is the dimension of its null space?

Solution:

Since the dimension of the null space is the difference of the number of unknowns and
the rank, we get
dim(Null(A))=(n—1)—(n—2) =1

1 2 1
2) LetA=| 2 -1 1
-1 30

a) Find the LU decomposition of A.

Solution:
1 2 1 1 2 1 1 2 1
A= |2 -1 1| 2y g o5 1| 2T g o5 1| = U, where
~1 3 o] "7 1o 5 1 0 0 0

EsEyE\A=U,ie., A= E;'E; ' E; U, Writing explicitly
(1 0 0] 1 oo0]ft o o]t 2 1
A=1|2 1 0|/]0 1 0|]0 1 0]]|0 =5 —1
00 1[|-10 1/]0 —1 1[0 0 O
0 0 2
1 0
1

where L = | 2
-1 -1



b) Find a basis for the column space and the null space of A. What is the rank of A?
Solution:

From U we see that pivots 1 and -5 appear in the first and second columns. Therefore
1 2

2 1,]-1 is a basis for the column space of A. To find a basis for the null space
-1 3
recall that Az =0 <= Ux = 0. Then

x|+ 21}2 +x3 = 0
—51‘2 — T3 = 0
3 3
implies x3 = —5x9 and xy = 3x5, hence, v = x5 | 1 |. Thus 1 is a basis for the
-5 -5
null space of A. Since rank equals to the dimension of the column space, rank(A) = 2.

c) Using the LU decomposition of A find the complete solution to

4
Ar =1 3
1
Solution:
4 4
Setting y = Ux, Ax = | 3 | implies Ly = | 3 |, since Ax = LUxz. Then using L
1 1
from part (a),
Y1 =4
21 +ye =3
-y —Yy2 tys =1
4
entails y; = 4, yo = —5 and y3 = 0. Now, Ux = | —5 | gives that
0
T +2x2 T3 =4
—51’2 —Tr3 = -5
-1 3
hence 1 = 3x9 — 1 and 23 = —bxy +5,ie.,x= | 0 | + a5 | 1
5 -5

3.) a) Let A bean m xn and B be an n X m matrix, and m > n. What can you say about the
invertibility of AB?

Solution:

We claim that AB is singular. Given m > n there exists a nonzero solution to Bx = 0,
i.e., dxg # 0 such that Bxy = 0. Then (AB)xy = A(Bxzy) = 0. But AB being an
m x m matrix and (AB)z, being zero with xy # 0 implies dim(Null(AB)) # 0, hence
rank(AB) # m. Thus AB is not invertible.



b) Let A and B be n x n matrices. Show that if A is singular then AB is also singular.

Solution:

Assume that A is singular. Then AT is also singular, i.e., A7 has a non-trivial solution,
say, ATxy = 0 for some zy # 0. But then we get that (AB)?zy = BT (ATzy) = 0, so that
(AB)T is singular. Thus AB is singular.

c) If Ais an n x n matrix with A2 = A and rank(A) = n, find A.

Solution:

rank(A) = n implies that A is invertible, i.e., A™! exists. Then multiplying both sides of
A? = A by A~ we get

APAT =AAT =T
and so

A=1.

4.) Let T: R?* — R? be defined by T'(z,y,2) = (v + 2y + 2,7 + vy, 2y + 2).

a) Write down what we must show to prove that 7" is a linear transformation. (Do not carry out
the computations).

b) What is the matrix representing this transformation in the standard basis for R3.

c) Show that T is non-singular and find its inverse transformation.

Solution:
a) We have to show that given two points (x1,y1,21) and (z2,yo, 22) in R3

T((z1,y1,21) + (22,92, 22)) = T(x1,y1, 21) + T2, Y2, 22),
T(C(xhyh z1)) = CT(Z‘hyh z1), Ve € R.

b) Since 7'(1,0,0) = (1,1,0), 7(0,1,0) = (2,1,2) and T(0,0,1) = (1,0,1), we get that
the matrix representing T is

A=

O = =
MO = DO
[ R

c) To show that T is non-singular, it suffices to show that A is row equivalent to I3ys3.
Using Gauss-Jordan method we get that

12 1]100 12 1)1 0 0
[AIl=|110(0 10| —"1011|1 -1 0
02100 1| oo 1|2 —2 -1
120]-1 2 1 1001 0 -1
Tl g1 0l -1 1 1 [Pl o1 0 -1 1 1 | =[I]A7Y.
TTETl 00 1] 2 =2 -1 0012 —2 -1
1 0 -1
Since A~' = [-1 1 1 |, we get that
2 —2 —1

T Ha,y,2) = (v —2,—x+y+ 220 —2y— 2).
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1. By Gauss-Jordan method compute the inverse of A = , if exists. (12 points).

O O =
o = O
_ O
—

0
Solution:

0100 1 000 1010: 0 100
1 010 0100 01 00¢: 1 0O0O0
r1 e e, (—)ra+ 13 — g
0101 0 010 0001:-101P0
| 0010 000 1] _0010'0001_
1000 : 0 10 -1
01 00: 1 00 O

(=Dry+r1 —m '
0001:-1010
_0010' 0 00 1 |
1000 0 1 0 -1
101 00: 1 00 O
T3 <> Ty
0010: 0 00 1
_0001'—101 0
0 1 0 —1
o 1 00 0
So the second part of the last matrix is A™" = 0 00 1
-1 01 0



2. Given a 3 X 3 matrix A = , for which vectors X does there exist a scalar ¢ such that

O = Ot
—= ot O
o O O

AX = cX7? (13 points)

Solution:
5 0 0 T T
AX = 1 50 To| = C | T2
01 5 T3 T3

& by = ey
T1 + dT9 = CTo
To + 53 = cx3

s b—-—0cr =0
1 = (¢ —5)xy
o = (c—5)x3

Case 1: If ¢ = 0 = System is homogeneous and rank(A) = 3 = X = 0, unique solution.

Case 2: If ¢ # 0 and ¢ # 5, then x1 = 19 = 3 = 0 implying X = 0 , unique solution.

0
Case 3: fc=5=2,=20=0= X = | 0|, 3 € R. There are infinitely many solutions.
T3
0
Hence; for X = 0, ¢ can be any real number; for X = | 0 |, x3 # 0, ¢ must be 5.
T3

3. Decide whether the followings are TRUE or FALSE. If true prove; if false, give a counter example
or explain. (Each 5 points)

i. Let A, X.Y be square matrices of the same size. Then AX = AY implies X =Y.

1
0

But X #Y, so FALSE.

20

-1 -1 0
0 }andX:[ ],thenAX:AY:[ 0 0]

ii. The system

r—y+z=3
—r+2y+kz=>5
2t —y+z=4

has a unique solution for each value of k.



1 -1 1 3 1 -1 1 3
1 2 k 5 |ntre—rand(=2)ri+rs—rs | 0 1 k41 ¢ 8
~1 1 ' 4 0 1 -1 & =2
1 3
(17’2+r3—>r3[0 1 k+1 8
k-2 1 —10

So the system has a unique solution if —k — 2 # 0, i.e. if k # —2, so FALSE.

1 0
iii. W={z|0]| +y 1| : 2,y € R} is the only subspace of R* of dimension 2.
0 0

There are other 2-dimensional subspaces like xz or yz planes, so FALSE.

Ty
iv. The subset W = { |za| : 2] + 23 + 23 = 1} of R? is a subspace of R
L3
0
0| is not an element of W since 0% + 02 + 0% # 1. So FALSE.
0
1 2 3
v. The nullity of A= | 0 1 4 | is 1.
001

Rank(A) = 3 = Nullity of A =3 —3 =0, so FALSE.

vi. The left null space of a 4 x 6 matrix A with real entries is a subspace of R®.

A is 4 x 6 matrix, so AT is 6 x 4 matrix. = N(AT) = {y e R*: ATy = 0} C R*, so FALSE.

vii. Let A and B be invertible n x n matrices, then (A+ B)™' =A='+ B~

1 0

ForA:{ },B:{_Olo

0 -1 1

invertible, so FALSE.

} both are invertible matrices. But A + B = [ 8 8 } is not

viii. If {u,v,w} is a linearly independent set of vectors in a vector space V then {u,u+v,u+v+w}
is also a linearly independent set of vectors.

Let «, 3,7 be scalars so that au+ f(u+v) +y(u+v4+w) =0= (a+F+Y)u+ (B+7)v+yw =0
Then, since {u,v,w} is a linearly independent set of vectors, each coefficient of the last equation
should be zero, so



a+pB+v=0
B+v=0
v=0
a=0=v=0
Hence {u,u+ v,u+ v+ w} is also linearly independent set of vectors, so the statement is TRUE.

4.(i) Prove that the polynomials 1, z, %3:2 — %, %x?’ — %x form a basis for P,, the vector space of all

polynomials with degree at most 3. (10 points)

Solution:
For a, b, ¢, d reals let a - 14 bz + ¢(32% — 3) + d(22% — 32) =0

= (a— %)+ (b—3d)z+ (3c)2® + (3d)2® =0

:a—gzb—%d:%c:éd:0

a=b=c=d=0

So linear independence follows. Since dimP; = 4 and there are 4 linearly independent polynomials,
they form a basis for P;.

(ii) Can we find an m x n matrix A and vectors b and ¢ so that Az = b has no solution and ATy = ¢
has exactly one solution. (10 points)

Solution:

In order that Az = b has no solution, r = dimR(A) = rank(A) < m must hold. i.e the column space
R(A) of A cannot span R™.

But, for AT is an n x m matrix, ATy = ¢ has exactly one solution if r = rank(AT) = rank(A) =m
must hold.

Clearly, we can not have both » < m and r = m. So we have a contradiction.



5. Find LDU factorization of the matrix A = 2 3 —4 1 | , where L is a lower triangular, D

is a diagonal and U is an echelon matrix. (15 points)

Solution:
1 2 =20 1 2 =20
3 4 1| Ep()En(—2)|0 -1 0 1
-1 2 0 2 0 4 -2 2
1 2 =20 1 0 0 1 2 -2 0
e
Ep(4)]0 -1 0 1|=|0 -1 0 01 0 -1]|=DU
0 0 =26 0 0 =2 00 1 =3
So E32(4)E31(1)E21(—2)A = DU
10 0
Hence L = E21 (2)E31(—1)E32(—4) = 2 1 0
-1 -4 1
10 0 10 O 12 -2 0
Thus A=| 2 1 0 0 -1 0 01 0 -1
-1 -4 1 0 0 -2 00 1 =3

is the required factorization.
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1

1. Let A= 1 , and let R be its row-reduced echelon form.

N O N
—_ o =
= o~ O

1

a) Find all solutions of Az = 0 by first finding R.

Solution:
. o 1 210
A 1‘T1+T2—>TM.—T1+T'3—>T‘3 2 4
0 0 01
. 1210
RN 012 2
0 01
1 -3 —4
E4:—2ﬂ1—>7”1 O 1 2 2
0 0 1
. . 1 -3 0
E5.4r3+rl—>rﬂ.—2r3+m—>r2 01 9 0
0 0 1
= R.
Ar=0 & Rx=0,so
r1—3x3 = 0
[L’2+21L'3 =0
T4 = 0.

Setting x3 to be the free parameter, the complete solutions are

T +3t

r = 2 = —2 teR.
XT3 t
Ty 0

b) Find a 323 matrix S such that SA = R. (Hint: Think of the elementary matrices corre-
sponding to the operations performed in part (a).)



Solution:

The row operations applied above corresponds to the following matrices E; in
3 x 3 dimensions:

1 1 4 1 -2 1 1
R = 1 -2 1 1 1/2 1
1 1 1 1 —1
1
11 = A,
1

SO E6E5E4E3E2E1 =9.

Multiplying these elementary matrices we get S:

1 1 4 1 -2 1 1
S = 1 —2 1 1 1/2 11
1 1 1 1 -1 1
1 1 4 1 -2 1
= 1 -2 1 1 1/2 1/2
1 1 1 ~1 1
1 1 4 ~1
= 1 -2 1 1/2 1/2
1 1 ~1 1
1 —4 -1 4
= 1 —2 1/2 1/2
1 ~1 1
—4 -1 4
= | 5/2 172 -2
-1 0 1

= S
You can always check your answer by explicit multiplication.

3
7

1
2. Let A= 12
3 0

D =N
—



a) Give an LU-decomposition of A.

Solution:
1 2 3
A E1:—2T1+T2—>7£2:—37‘1+T3—>T3 O O 1
0 0 1
= U
1 1
where 1 = | -2 1 , By = 1
1 -3 1
So EyE A = U implies A = E;'E;'U = LU.
1 1
A = 1 21 U
3 1 1
1 1 2 3
= 21 0 0 1
3 1 0 0 1

is the LU-decomposition.

b) Using the decomposition, solve Ax = | 3

=~ —
N———

Solution:
1 1 1
Ar= |3 | ifand only if LUx = [ 3 |, say Ur =y. Then Ly = | 3
4 4) 4
Y1 =1
201 +1y2 = 3 = Yy =1
3y1+ys = 4 = ys;=1.
1
=y=11
1
1
Then we solve Ux =y = | 1 | with the above U.
1

Back substitution gives:
T+ 205+ 323 = 1
T3
XT3 =1

Il
—_



—2—2t
= T+ 209 = =211 = —2 — 2x9. Letting o =t we get x = t
1

c) Is A invertible? Justify your answer (do not find A™!, in case it exists!).

Solution:

No, A is not invertible. If A, being square, were invertible, Ax = b would have a
unique solution for every b. There might be other reasoning as well: if we go one
step further

1 2 3
U—10 01
0 00

is not row-equivalent to I3, hence not invertible (There is a zero row).

1 1 5 1 4
3. Consider the matrix A = 2 -1 1 2 2
3 0 6 0 =3

a) Describe the null space N(A) of A by giving a basis for it and finding its dimension.

Solution:
1 1 5 1 4
A —27‘1—‘,—7‘2—"‘2_,—)37'1"1‘7'3_’7’3 0 _3 —9 O _6
0 -3 -9 -3 —15
o 11 5 1 4
372 T2 0o 1 3 0 2

0 -3 -9 -3 —-15

—ro+r1—71,3r2+r3—r3
—_—

—
w
(e
[\)

. 10212
soTe 0130
00011
10201
TTatTLeT 013 0
00011

N(A) is the set x such that Ar =0 < Rr =0 <



r1+2x3+x5 = 0 r1 = —2x3— Ts5
To+3r3+225 = 0 = x5 = —3x3— 225
T4+ X5 =0 rr = —Ts5.
—2t—s —2 —1
—3t — 2s -3 -2
Ifz € N(A) thenz = t . Abasisfor N(A)={] 1 [.,] 0 |}
-8 0 -1
s 0 1

then dim N(A) = 2.

b) Give bases for and dimensions of the column space C'(A) and the row space R(A) of A.
Tell also which vector spaces they sit in, respectively.

Solution:

First, second and fourth columns of R contain leading 1s, so we choose first, second

1 1
and fourth columns of A as a basis for C(A): abasisfor C(A)={| 2 |,| -1 |,
3 0

A basis for R(A)={(1 02 0 1),(0 130 2),(000 1 1)}

dim C(A) = dim R(A) = 3. Lastly C(A) C R® and R(A) C R°.
c) Find rank (A). Is A of maximal rank? Explain.

Solution:
rank (A) = dim C(A) = dim R(A) = 3.

Yes, A s of maximal rank, for rank (A) is at most the minimum of row number
(= 3) and column number (= 5), which is in this case 3.

4. Let {e1, €2, €3} be the standard basis for R?

a) Show that the set B = {e; + €, €2 + €3, €1 + €3} is a basis for R3.

Solution:

Solve ¢ (€1 + €2) + ca(€2 + €3) + c3(e1 + €3) = 0.

Coeflicient matrix

—_
@)
—_
-y
@)
—_

—Tri14+r2—r2
0 —

A pum

—_
—_
(e
—_
|
—_

(@)
—_
—_
o
—
—_

—_
e}
—_
—_
—_

1
—r2+r3—T3 BN
—

o O
O =
[
N =
o O

—_
—_ |
—_

—7T3+1r1—71,r3+r2 =2
% ]



= Az = 0 has a unique solution z = 0.

= 1 = 3 = c3 = 0 is the only solution.

B is a linearly independent set. Note that this suffices to say B is a basis for R3,
as dim (R?®) = the number of vectors in B = 3.

3 0 0
b) fA=| 1 —1 0 | is the matrix of a linear transformation 7' : R* — R? in the stan-
2 1 1

dard basis, what is the matrix of 7" in the basis B?

Solution:
We understand that
T(e) = (3,1,2)
T(€2) - <O7_172>
T(e3) = (0,0,1).

In the new basis :
T(er+e) = Tla)+T(e) = (3,0,3)

T(ea+e3) = T(ea)+ T(es) (0,—-1,2)
T(er+e€3) = T(e)+T(e3) = (3,1,3)

3 0 3
Then the matrix in B is 0 -1 -1
3 2 3

c) Find the image of the point (2, —1,0) under 7.

Solution:
2 3 0 0 2 6
T2, -1,00=A| -1 | =[1 -1 0 -1 | =13
0 2 1 1 0 3

5. Let V be a 3-dimensional vector space and let B = {ay, as, a3} be a basis for V. Let T be a
linear transformation such that:

T(Oq) = Oég,T(Oég) = (O3, T(Oég) = 0.
Show that T2 # 0 but 7% = 0. (T™ means n successive applications of T'.)

Solution:

First we check the images of the basis elements:
T(ay) = g implies T?(a;) = T(ag) = a3 implies T3(ay) = T'(az) = 0
T(a) = g implies T?(a) = T(a3) = 0 implies T3(az) = T(0) =0

T(a3) = 0 implies T?(a3) = T(0) = 0 implies T%(a3) = 0 since T is linear.



T?% # 0 since T?(ay) = ag # 0.
T3 =0 means T3(z) =0 for all z € V.

v €V = x=co+ e+ czaz = T3(x) = cT?(a1) + T3 (an) + 3T (a3) =
0 = T3x)=0forallz eV = T3=0.
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1 2 1
1.) a)[4] Find c such that the following set of columns is a basis for R3: 1], 1],1
—1 0 c
Solution:
1 21 1 2 1 1 2 1
A= |1 1 1| =22 g -1 o | 2T g -1 0 |, Hence
10 ¢ " o 2 e+l 0 0 c+1

c# —1,ie., Ve € R\ {—1} the given set of columns is a basis for R.
b)[4] Ts the set of polynomials S = {1 —z, 1 + z, 1 — 2%} linearly independent?
Solution:

Consider
a(l—z)+b(1+2z)+c(l—2*)=0

Then —cz? = 0 implies c=0. So a+b =0 and —a + b = 0 give that a = 0, b = 0. Thus
S is linearly independent.

c)[2] If a matrix A is n x (n — 1) and its rank is (n — 2) what is the dimension of its null space?

Solution:

Since the dimension of the null space is the difference of the number of unknowns and
the rank, we get
dim(Null(A))=(n—1)—(n—2) =1

1 2 1
2) LetA=| 2 -1 1
-1 30

a) [10] Find the LU decomposition of A.

Solution:
1 2 1 1 2 1 1 2 1
A= |2 -1 1| 2y g o5 1| 2T g o5 1| = U, where
~1 3 o "7 o 5 1 0 0 0

EsEyE A =U,ie., A= E;'E; ' E; U, Writing explicitly
(1 0 0] 1 oo0]ft o o]t 2 1
A=1|2 1 0/]0 1 0|]0 1 0|]|0 =5 —1
00 1[|-10 1/]0 =1 1[0 0 O
0 0 2
1 0
1

where L = | 2
-1 -1



b) [6] Find a basis for the column space and the null space of A. What is the rank of A?
Solution:

From U we see that pivots 1 and -5 appear in the first and second columns. Therefore
1 2

2 1,]-1 is a basis for the column space of A. To find a basis for the null space
-1 3
recall that Az =0 <= Ux = 0. Then

x|+ 21}2 +x3 = 0
—51‘2 — T3 = 0
3 3
implies x3 = —5x9 and xy = 3x5, hence, v = x5 | 1 |. Thus 1 is a basis for the
) -5
null space of A. Since rank equals to the dimension of the column space, rank(A) = 2.

c) [4] Using the LU decomposition of A find the complete solution to

4
Ar =1 3
1
Solution:
4 4
Setting y = Ux, Ax = | 3 | implies Ly = | 3 |, since Ax = LUxz. Then using L
1 1
from part (a),
Y1 =4
20 +ye =3
-y —Yy2 tys =1
4
entails y; = 4, yo = —5 and y3 = 0. Now, Ux = | —5 | gives that
0
T +2x2 T3 =4
—51’2 —xr3 = -5
-1 3
hence ©1 = 3x9 — 1 and 23 = —bxy +5,ie.,x= | 0 | + a5 | 1
5 -5

3.) a) [6] Let A be an m x n and B be an n x m matrix, and m > n. What can you say about the
invertibility of AB?

Solution:

We claim that AB is singular. Given m > n there exists a nonzero solution to Bx = 0,
i.e., dxg # 0 such that Bxy = 0. Then (AB)zy = A(Bxzy) = 0. But AB being an
m x m matrix and (AB)z, being zero with xy # 0 implies dim(Null(AB)) # 0, hence
rank(AB) # m. Thus AB is not invertible.



b) [6] Let A and B be n x n matrices. Show that if A is singular then AB is also singular.

Solution:

Assume that A is singular. Then A7 is also singular, i.e., AT has a non-trivial solution,
say, ATxy = 0 for some zy # 0. But then we get that (AB)Txzy = BT (ATzy) = 0, so that
(AB)T is singular. Thus AB is singular.

c) [3] If Ais an n X n matrix with A? = A and rank(A4)=n, find A.

Solution:

rank(A) = n implies that A is invertible, i.e., A™! exists. Then multiplying both sides of
A?2 = Aby A7 we get
APAT =AAT =T
and so
A=1.

4.) Let T: R?* — R3? be defined by T'(z,y,2) = (v + 2y + 2,7 + vy, 2y + 2).

a) [2] Write down what we must show to prove that T is a linear transformation. (Do not carry
out the computations).

b) [5] What is the matrix representing this transformation in the standard basis for R3.

c) [8] Show that T is non-singular and find its inverse transformation.

Solution:
a) We have to show that given two points (1,1, z1) and (22, y2, 22) in R?

T((z1,91,21) + (22, Y2, 22)) = T(w1, 91, 21) + (22, Y2, 22),
T(c(z1,91,21)) = cT'(x1,91,21), Ve € R.

b) Since 7'(1,0,0) = (1,1,0), 7(0,1,0) = (2,1,2) and 7(0,0,1) = (1,0,1), we get that
the matrix representing T is

1
A=]1
0

N — DN

1
0
1

c¢) To show that T is non-singular, it suffices to show that A is row equivalent to I3y3.
Using Gauss-Jordan method we get that

121|100 1211 0 o
Al=|1 10010 =201 1/1 -1 0
02100 1] ™™™ 0012 -2 -1
1 20[-1 2 1 1001 0 -1
ImTolg o1 01 10 1 | 2EEEmilo o1 oo0l-1 10 1 | =[]A7Y.
TR0 0 1) 2 -2 —1 0012 -2 —1
1 0 -1
Knowing A=' = | -1 1 1 |, we get that
2 -2 -1

T Ya,y,2) = (v —2,—x+y+ 2,20 —2y — 2).
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