Math 170 - Worksheet 4

1. Find the domains and derivatives of the given vector functions:

(a)
$$\vec{r}(t) = \langle \arctan t^2, \ln(1+t), t \rangle$$
 (b) $\vec{r}(t) = \langle e^{t/2}, \sqrt{t+1}, \ln t \rangle$ (c) $\vec{r}(t) = \langle \ln(1-t^2), \frac{1}{t}, \cos t \rangle$

2. Do the curves below cross the given points or sets? If yes, where?

(a)
$$\vec{r}(t) = \langle 2t+1, t^2-3, \sin t \rangle, t \in \mathbb{R}$$
, the xy-plane (b) $\vec{r}(t) = \langle \ln(1-t), t, \sqrt{t} \rangle, t \in (0,1)$, the x-axis

(c)
$$\vec{r}(t) = \langle t+5, t^3, \frac{t+2}{t-2} \rangle, t \in (-\infty, -2)$$
, the point $(1, -64, \frac{1}{3})$. (d) $\vec{r}(t) = \langle \frac{1}{1+t^2, \cos t, \sin t}, t \in \mathbb{R}$, the xy -plane.

3. Find the unit tangent vector at the given points:

(a)
$$\vec{r}(t) = \langle 2t, t^3/5, t - t^2 \rangle$$
, $t = 5$ (b) $\vec{r}(t) = \langle \cos t, \sin t, 3t^2 \rangle$, $t = 1/\sqrt{3}$ (c) $\vec{r}(t) = \langle \frac{1}{t}, t - 3, \sqrt{t} \rangle$, $t = 1$.

- **4.** Compute the vector T for $\vec{r}(t) = \langle \cos t, \sin t, \sqrt{3}t \rangle$ at $t = \pi$.
- **5.** Find the lengths of the given arcs:

(a)
$$\vec{r}(t) = \langle t^2/2, \sqrt{2}t, \ln t \rangle$$
, $1 \le t \le 2$. (b) $\vec{r}(t) = \langle \sin t, \cos t, t^2/2 \rangle$, $0 \le t \le 1$

(c)
$$\vec{r}(t) = \langle e^t \cos t, e^t, e^t \sin t \rangle$$
, $0 \leqslant t \leqslant 2\pi$.

- **6.** Show that if $\vec{r}(t)$ is a differentiable curve in \mathbb{R}^3 , then $\frac{d}{dt}(\vec{r}(t) \times \vec{r}'(t)) = \vec{r}(t) \times \vec{r}''(t)$.
- **7*.** Show that the tangent vectors of $\vec{r}(t) = \langle 3t t^3, 3t^2, 3t + t^3 \rangle$ make a constant angle with some fixed unit vector \vec{u} .
- **8.** Show that if $\vec{r}(t)$ is always orthogonal to $\vec{r}'(t)$, then $\vec{r}(t)$ is moving on a sphere whose center is the origin.
- **9.** Evaluate $\int_0^2 \langle 6t^2, -4t, 3 \rangle dt$.
- **10.** Find a curve $\vec{r}(t)$ which satisfies $\vec{r}''(t) = \langle 6t, -12t^2, 1 \rangle$, $\vec{r}'(0) = \langle 1, 2, -3 \rangle$ and $\vec{r}(0) = \langle 7, 0, 1 \rangle$.
- **11.** Find the curvature of the curve $\vec{r}(t) = \langle 5t + 2, -t^2, t^3 \rangle$ at t = 1.
- 12. Show that if a plane curve is parametrized as x = f(t) and y = g(t), then its curvature is given by

$$\kappa(t) = \frac{|f'(t)g''(t) - g'(t)f''(t)|}{\left[(f'(t))^2 + (g'(t)^2)\right]^{3/2}}$$

Answers:

1. (a)
$$(-1, \infty), \vec{r}'(t) = \left\langle \frac{2t}{1+t^4}, \frac{1}{1+t}, 1 \right\rangle$$
 (b) $(0, \infty), \vec{r}'(t) = \left\langle \frac{1}{2}e^{t/2}, \frac{1}{2\sqrt{t+1}}, \frac{1}{t} \right\rangle$

(c)
$$(-1,0) \cup (0,1), \vec{r}'(t) = \left\langle -\frac{2}{1-t^2}, -\frac{1}{t^2}, -\sin t \right\rangle$$
. 2. (a) Yes, at $\vec{r}(\sqrt{3}) = \left\langle 2\sqrt{3} + 1, 0, \sin \sqrt{3} \right\rangle$ and

$$\vec{r}(-\sqrt{3}) = \langle -2\sqrt{3} + 1, 0, -\sin\sqrt{3} \rangle$$
 (b) No (c) Yes, at $t = -4$ (d) Yes, at $t = k\pi, k \in \mathbb{Z}$.

3. (a)
$$\left\langle \frac{2}{\sqrt{310}}, \frac{15}{\sqrt{310}}, -\frac{9}{\sqrt{310}} \right\rangle$$
 (b) $\frac{\left\langle -\sin(1/\sqrt{3}), \cos(1/\sqrt{3}), 2\sqrt{3} \right\rangle}{\sqrt{13}}$ (c) $\left\langle -\frac{2}{3}, \frac{2}{3}, \frac{1}{3} \right\rangle$.

4.
$$t = \left\langle 0, -\frac{1}{2}, \frac{\sqrt{3}}{2} \right\rangle$$
. **5.** (a) $3/2 + \ln 2$ (b) $\frac{\sqrt{2} + \ln(1 + \sqrt{2})}{2}$ (c) $\sqrt{3}(e^{2\pi} - 1)$ **9.** $\langle 16, -8, 6 \rangle$

10.
$$\langle t^3 + t + 7, 2t - t^4, \frac{t^2}{2} - 3t + 1 \rangle$$
. **11.** $\frac{\sqrt{1036}}{38\sqrt{38}}$