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Preface 

 
Here are my online notes for my Calculus III course that I teach here at Lamar University.  
Despite the fact that these are my “class notes”, they should be accessible to anyone wanting to 
learn Calculus III or needing a refresher in some of the topics from the class.   
 
These notes do assume that the reader has a good working knowledge of Calculus I topics 
including limits, derivatives and integration.  It also assumes that the reader has a good 
knowledge of several Calculus II topics including some integration techniques, parametric 
equations, vectors, and knowledge of three dimensional space. 
 
Here are a couple of warnings to my students who may be here to get a copy of what happened on 
a day that you missed.   
 

1. Because I wanted to make this a fairly complete set of notes for anyone wanting to learn 
calculus I have included some material that I do not usually have time to cover in class 
and because this changes from semester to semester it is not noted here.  You will need to 
find one of your fellow class mates to see if there is something in these notes that wasn’t 
covered in class. 
 

2. In general I try to work problems in class that are different from my notes.  However, 
with Calculus III many of the problems are difficult to make up on the spur of the 
moment and so in this class my class work will follow these notes fairly close as far as 
worked problems go.  With that being said I will, on occasion, work problems off the top 
of my head when I can to provide more examples than just those in my notes.  Also, I 
often don’t have time in class to work all of the problems in the notes and so you will 
find that some sections contain problems that weren’t worked in class due to time 
restrictions. 
 

3. Sometimes questions in class will lead down paths that are not covered here.  I try to 
anticipate as many of the questions as possible in writing these up, but the reality is that I 
can’t anticipate all the questions.  Sometimes a very good question gets asked in class 
that leads to insights that I’ve not included here.  You should always talk to someone who 
was in class on the day you missed and compare these notes to their notes and see what 
the differences are. 
 

4. This is somewhat related to the previous three items, but is important enough to merit its 
own item.  THESE NOTES ARE NOT A SUBSTITUTE FOR ATTENDING CLASS!!  
Using these notes as a substitute for class is liable to get you in trouble. As already noted 
not everything in these notes is covered in class and often material or insights not in these 
notes is covered in class. 
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Surface Integrals 

 

 Introduction 

In the previous chapter we looked at evaluating integrals of functions or vector fields where the 
points came from a curve in two- or three-dimensional space.  We now want to extend this idea 
and integrate functions and vector fields where the points come from a surface in three-
dimensional space.  These integrals are called surface integrals. 
 
Here is a list of the topics covered in this chapter. 
 
Parametric Surfaces – In this section we will take a look at the basics of representing a surface 
with parametric equations.  We will also take a look at a couple of applications. 
 
Surface Integrals – Here we will introduce the topic of surface integrals.  We will be working 
with surface integrals of functions in this section. 
 
Surface Integrals of Vector Fields – We will look at surface integrals of vector fields in this 
section. 
 
Stokes’ Theorem – We will look at Stokes’ Theorem in this section. 
 
Divergence Theorem – Here we will take a look at the Divergence Theorem. 
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 Parametric Surfaces 

Before we get into surface integrals we first need to talk about how to parameterize a surface.  
When we parameterized a curve we took values of t from some interval [ ],a b  and plugged them 
into 
 ( ) ( ) ( ) ( )r t x t i y t j z t k= + +

rr rr  
and the resulting set of vectors will be the position vectors for the points on the curve. 
 
With surfaces we’ll do something similar.  We will take points, ( ),u v , out of some two-
dimensional space D and plug them into 
 ( ) ( ) ( ) ( ), , , ,r u v x u v i y u v j z u v k= + +

rr rr  
and the resulting set of vectors will be the position vectors for the points on the surface S that we 
are trying to parameterize.  This is often called the parametric representation of the parametric 
surface S. 
 
We will sometimes need to write the parametric equations for a surface.  There are really 
nothing more than the components of the parametric representation explicitly written down. 
 ( ) ( ) ( ), , ,x x u v y y u v z z u v= = =  
 
Example 1  Determine the surface given by the parametric representation 
 ( ), cos sinr u v u i u v j u v k= + +

rr rr  
Solution 
Let’s first write down the parametric equations. 
 cos sinx u y u v z u v= = =  
 
Now if we square y and z and then add them together we get, 
 ( )2 2 2 2 2 2 2 2 2 2 2cos sin cos siny z u v u v u v v u x+ = + = + = =  
 
So, we were able to eliminate the parameters and the equation in x, y, and z is given by, 

2 2 2x y z= +  
 
From the Quadric Surfaces section notes we can see that this is a cone that opens along the x-axis. 
 
We are much more likely to need to be able to write down the parametric equations of a surface 
than identify the surface from the parametric representation so let’s take a look at some examples 
of this. 
 
Example 2  Give parametric representations for each of the following surfaces. 

(a) The elliptic paraboloid 2 25 2 10x y z= + − .   [Solution] 
(b) The elliptic paraboloid 2 25 2 10x y z= + −  that is in front of the yz-plane.    
       [Solution] 
(c) The sphere 2 2 2 30x y z+ + = .   [Solution] 
(d) The cylinder 2 2 25y z+ = .   [Solution] 
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Solution 
(a) The elliptic paraboloid 2 25 2 10x y z= + − . 
 
This one is probably the easiest one of the four to see how to do.  Since the surface is in the form 

( ),x f y z=  we can quickly write down a set of parametric equations as follows, 

 2 25 2 10x y z y y z z= + − = =  
 
The last two equations are just there to acknowledge that we can choose y and z to be anything we 
want them to be.  The parametric representation is then, 
 ( ) ( )2 2, 5 2 10r y z y z i y j z k= + − + +

rr rr  
[Return to Problems] 

 
(b) The elliptic paraboloid 2 25 2 10x y z= + −  that is in front of the yz-plane. 
 
This is really a restriction on the previous parametric representation.  The parametric 
representation stays the same. 
 ( ) ( )2 2, 5 2 10r y z y z i y j z k= + − + +

rr rr  
 
However, since we only want the surface that lies in front of the yz-plane we also need to require 
that 0x ≥ .  This is equivalent to requiring, 
 2 2 2 25 2 10 0 or 5 2 10y z y z+ − ≥ + ≥  

[Return to Problems] 
 
(c) The sphere 2 2 2 30x y z+ + = . 
 
This one can be a little tricky until you see how to do it.  In spherical coordinates we know that 
the equation of a sphere of radius a is given by, 
 aρ =  
and so the equation of this sphere (in spherical coordinates) is 30ρ = .  Now, we also have the 
following conversion formulas for converting Cartesian coordinates into spherical coordinates. 
 sin cos sin sin cosx y zρ ϕ θ ρ ϕ θ ρ ϕ= = =  
 
However, we know what ρ  is for our sphere and so if we plug this into these conversion 
formulas we will arrive at a parametric representation for the sphere.  Therefore, the parametric 
representation is, 
 ( ), 30 sin cos 30 sin sin 30 cosr i j kθ ϕ ϕ θ ϕ θ ϕ= + +

rr rr  
 
All we need to do now is come up with some restriction on the variables.  First we know that we 
have the following restriction. 
 0 ϕ π≤ ≤  
This is enforced upon us by choosing to use spherical coordinates.  Also, to make sure that we 
only trace out the sphere once we will also have the following restriction. 
 0 2θ π≤ ≤  

[Return to Problems] 
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(d)  The cylinder 2 2 25y z+ = . 
 
As with the last one this can be tricky until you see how to do it.  In this case it makes some sense 
to use cylindrical coordinates since they can be easily used to write down the equation of a 
cylinder. 
 
In cylindrical coordinates the equation of a cylinder of radius a is given by 
 r a=  
and so the equation of the cylinder in this problem is 5r = . 
 
Next, we have the following conversion formulas. 
 sin cosx x y r z rθ θ= = =  
Notice that they are slightly different from those that we are used to seeing.  We needed to change 
them up here since the cylinder was centered upon the x-axis. 
 
Finally, we know what r is so we can easily write down a parametric representation for this 
cylinder. 
 ( ), 5sin 5cosr x x i j kθ θ θ= + +

rr rr  
 
We will also need the restriction 0 2θ π≤ ≤  to make sure that we don’t retrace any portion of 
the cylinder.  Since we haven’t put any restrictions on the “height” of the cylinder there won’t be 
any restriction on x. 

[Return to Problems] 
 
In the first part of this example we used the fact that the function was in the form ( ),x f y z=  to 
quickly write down a parametric representation.  This can always be done for functions that are in 
this basic form. 
 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

, , ,

, , ,

, , ,

z f x y r x y x i y j f x y k

x f y z r x y f y z i y j z k

y f x z r x y x i f x z j z k

= ⇒ = + +

= ⇒ = + +

= ⇒ = + +

rr rr
rr rr
rr rr

 

 
Okay, now that we have practice writing down some parametric representations for some surfaces 
let’s take a quick look at a couple of applications. 
 
Let’s take a look at finding the tangent plane to the parametric surface S given by, 
 ( ) ( ) ( ) ( ), , , ,r u v x u v i y u v j z u v k= + +

rr rr  
 
First, define 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

, , , ,

, , , ,

u

v

x y zr u v u v i u v j u v k
u u u
x y zr u v u v i u v j u v k
v v v

∂ ∂ ∂
= + +

∂ ∂ ∂
∂ ∂ ∂

= + +
∂ ∂ ∂

rr rr

rr rr
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Now, provided 0u vr r× ≠
rr r

 it can be shown that the vector u vr r×
r r

 will be orthogonal to the surface 
S.  This means that it can be used for the normal vector that we need in order to write down the 
equation of a tangent plane.  This is an important idea that will be used many times throughout 
the next couple of sections. 
 
Let’s take a look at an example. 
 
Example 3  Find the equation of the tangent plane to the surface given by 
 ( ) ( )2 2, 2r u v u i v j u v k= + + +

rr rr  

at the point ( )2,2,3 . 
 
Solution 
Let’s first compute u vr r×

r r
.  Here are the two individual vectors. 

 ( ) ( ), 2 , 4u vr u v i u k r u v v j k= + = +
r rr rr r  

 
Now the cross product (which will give us the normal vector nr ) is, 

 1 0 2 8 4
0 4 1

u v

i j k
n r r u uv i j v k

v
= × = = − − +

rr r
rr rr r r  

 
Now, this is all fine, but in order to use it we will need to determine the value of u and v that will 
give us the point in question.  We can easily do this by setting the individual components of the 
parametric representation equal to the coordinates of the point in question.  Doing this gives, 

 2

2

2 2
2 2 1
3

u u
v v

u v

= ⇒ =

= ⇒ = ±

= +

 

 
Now, as shown, we have the value of u, but there are two possible values of v.  To determine the 
correct value of v let’s plug u into the third equation and solve for v.  This should tell us what the 
correct value is. 
 3 4 1v v= + ⇒ = −  
 
Okay so we now know that we’ll be at the point in question when 2u =  and 1v = − .  At this 
point the normal vector is, 

16 4n i j k= − −
rr rr

 
The tangent plane is then, 

 
( ) ( ) ( )16 2 2 4 3 0

16 4 18
x y z

x y z
− − − − − =

− − =
 

 
You do remember how to write down the equation of a plane, right? 
 
The second application that we want to take a quick look at is the surface area of the parametric 
surface S given by, 
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 ( ) ( ) ( ) ( ), , , ,r u v x u v i y u v j z u v k= + +
rr rr  

and as we will see it again comes down to needing the vector u vr r×
r r

. 
 
So, provided S is traced out exactly once as ( ),u v  ranges over the points in D the surface area of 
S is given by, 

u v
D

A r r dA= ×∫∫
r r

 

 
Let’s take a look at an example. 
 
Example 4  Find the surface area of the portion of the sphere of radius 4 that lies inside the 
cylinder 2 2 12x y+ =  and above the xy-plane. 
 
Solution 
Okay we’ve got a couple of things to do here.  First we need the parameterization of the sphere.  
We parameterized a sphere earlier in this section so there isn’t too much to do at this point.  Here 
is the parameterization. 
 ( ), 4sin cos 4sin sin 4cosr i j kθ ϕ ϕ θ ϕ θ ϕ= + +

rr rr  
 
Next we need to determine D.  Since we are not restricting how far around the z-axis we are 
rotating with the sphere we can take the following range for θ . 
 0 2θ π≤ ≤  
 
Now, we need to determine a range for ϕ .  This will take a little work, although it’s not too bad.  
First, let’s start with the equation of the sphere. 
 2 2 2 16x y z+ + =  
Now, if we substitute the equation for the cylinder into this equation we can find the value of z 
where the sphere and the cylinder intersect. 

 

2 2 2

2

2

16
12 16

4 2

x y z
z
z z

+ + =

+ =

= ⇒ = ±

 

 
Now, since we also specified that we only want the portion of the sphere that lies above the xy-
plane we know that we need 2z = .  We also know that 4ρ = .  Plugging this into the following 
conversion formula we get, 

 
cos

2 4cos
1cos
2 3

z ρ ϕ
ϕ

π
ϕ ϕ

=
=

= ⇒ =

 

So, it looks like the range of ϕ  will be, 

 0
3
π

ϕ≤ ≤  
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Finally, we need to determine r rθ ϕ×
r r

.  Here are the two individual vectors. 

 
( )
( )

, 4sin sin 4sin cos

, 4cos cos 4cos sin 4sin

r i j

r i j k
θ

ϕ

θ ϕ ϕ θ ϕ θ

θ ϕ ϕ θ ϕ θ ϕ

= − +

= + −

r rr
rr rr  

 
Now let’s take the cross product. 

 

( )
2 2 2 2

2 2 2 2

2 2

4sin sin 4sin cos 0
4cos cos 4cos sin 4sin

16sin cos 16sin cos sin 16sin sin 16sin cos cos

16sin cos 16sin sin 16sin cos sin cos

16sin cos 16sin s

i j k
r r

i k j k

i j k

i

θ ϕ ϕ θ ϕ θ
ϕ θ ϕ θ ϕ

ϕ θ ϕ ϕ θ ϕ θ ϕ ϕ θ

ϕ θ ϕ θ ϕ ϕ θ θ

ϕ θ ϕ

× = −
−

= − − − −

= − − − +

= − −

rr r

r r

r rr r
rr r

r
in 16sin cosj kθ ϕ ϕ−

rr

 

 
We now need the magnitude of this, 

 

( )
( )

4 2 4 2 2 2

4 2 2 2 2

2 2 2

2

256sin cos 256sin sin 256sin cos

256sin cos sin 256sin cos

256sin sin cos

16 sin
16 sin
16sin

r rθ ϕ ϕ θ ϕ θ ϕ ϕ

ϕ θ θ ϕ ϕ

ϕ ϕ ϕ

ϕ

ϕ

ϕ

× = + +

= + +

= +

=

=

=

r r

 

We can drop the absolute value bars in the sine because sine is positive in the range of ϕ  that we 
are working with. 
 
We can finally get the surface area. 

 

2
3

0 0

2 3

00

2

0

16sin

16sin

16cos

8

16

D

A dA

d d

d

d

ππ

π π

π

ϕ

ϕ ϕ θ

ϕ θ

θ

π

=

=

= −

=

=

∫∫

∫ ∫

∫

∫
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 Surface Integrals 

It is now time to think about integrating functions over some surface, S, in three-dimensional 
space.  Let’s start off with a sketch of the surface S since the notation can get a little confusing 
once we get into it.  Here is a sketch of some surface S. 

 
The region S will lie above (in this case) some region D that lies in the xy-plane.  We used a 
rectangle here, but it doesn’t have to be of course.  Also note that we could just as easily looked at 
a surface S that was in front of some region D in the yz-plane or the xz-plane.  Do not get so 
locked into the xy-plane that you can’t do problems that have regions in the other two planes. 
 
Now, how we evaluate the surface integral will depend upon how the surface is given to us.  
There are essentially two separate methods here, although as we will see they are really the same. 
 
First, let’s look at the surface integral in which the surface S is given by ( ),z g x y= .  In this 
case the surface integral is, 
 

( ) ( )( )
22

, , , , , 1
S

D

g gf x y z dS f x y g x y dA
x y

 ∂ ∂ = + +  ∂ ∂   

⌠⌠

⌡⌡

∫∫  

  
Now, we need to be careful here as both of these look like standard double integrals.  In fact the 
integral on the right is a standard double integral.  The integral on the left however is a surface 
integral.  The way to tell them apart is by looking at the differentials.  The surface integral will 
have a dS while the standard double integral will have a dA. 
 
In order to evaluate a surface integral we will substitute the equation of the surface in for z in the 
integrand and then add on the often messy square root.  After that the integral is a standard double 
integral and by this point we should be able to deal with that. 
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Note as well that there are similar formulas for surfaces given by ( ),y g x z=  (with D in the xz-

plane) and ( ),x g y z=  (with D in the yz-plane).  We will see one of these formulas in the 
examples and we’ll leave the other to you to write down. 
 
The second method for evaluating a surface integral is for those surfaces that are given by the 
parameterization, 
 ( ) ( ) ( ) ( ), , , ,r u v x u v i y u v j z u v k= + +

rr rr  
In these cases the surface integral is, 
 

( ) ( )( ), , , u v
S D

f x y z dS f r u v r r dA= ×∫∫ ∫∫
r r r

 

where D is the range of the parameters that trace out the surface S. 
 
Before we work some examples let’s notice that since we can parameterize a surface given by 

( ),z g x y=  as, 

 ( ) ( ), ,r x y xi yj g x y k= + +
rr rr  

we can always use this form for these kinds of surfaces as well.  In fact it can be shown that, 

 
22

1x y
g gr r
x y

 ∂ ∂ × = + +  ∂ ∂   

r r  

for these kinds of surfaces.  You might want to verify this for the practice of computing these 
cross products. 
 
Let’s work some examples. 
 
Example 1  Evaluate 6

S

xy dS∫∫  where S is the portion of the plane 1x y z+ + =  that lies in 

front of the yz-plane. 
 
Solution 
Okay, since we are looking for the portion of the plane that lies in front of the yz-plane we are 
going to need to write the equation of the surface in the form ( ),x g y z= .  This is easy enough 
to do. 
 1x y z= − −  
Next we need to determine just what D is.  Here is a sketch of the surface S. 
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Here is a sketch of the region D. 
 

 
 
Notice that the axes are labeled differently than we are used to seeing in the sketch of D.  This 
was to keep the sketch consistent with the sketch of the surface.  We arrived at the equation of the 
hypotenuse by setting x equal to zero in the equation of the plane and solving for z.  Here are the 
ranges for y and z. 
 0 1 0 1y z y≤ ≤ ≤ ≤ −  
 
Now, because the surface is not in the form ( ),z g x y=  we can’t use the formula above.  
However, as noted above we can modify this formula to get one that will work for us.  Here it is, 

 ( ) ( )( )
2 2

, , , , , 1
S

D

g gf x y z dS f g y z y z dA
y z

 ∂ ∂ = + +   ∂ ∂  

⌠⌠

⌡⌡

∫∫  

The changes made to the formula should be the somewhat obvious changes.  So, let’s do the 
integral. 

 ( ) ( ) ( )2 26 6 1 1 1 1
S D

xy dS y z y dA= − − + − + −∫∫ ∫∫  

Notice that we plugged in the equation of the plane for the x in the integrand.  At this point we’ve 
got a fairly simple double integral to do.  Here is that work. 
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( )2

1 1 2

00

1 1
2 2

00

1
2 3

0

1
2 3 4

0

6 3 6

6 3

16 3
2

1 16 3
2 2

1 1 1 36 3
4 3 8 4

S D

y

y

xy dS y y zy dA

y y zy dz dy

yz zy z y dy

y y y dy

y y y

−

−

= − −

= − −

 = − − 
 

= − +

 = − + = 
 

⌠
⌡

⌠

⌡

⌠
⌡

∫∫ ∫∫

∫

 

 
Example 2  Evaluate 

S

z dS∫∫  where S is the upper half of a sphere of radius 2.  

Solution 
We gave the parameterization of a sphere in the previous section.  Here is the parameterization 
for this sphere. 
 ( ), 2sin cos 2sin sin 2cosr i j kθ ϕ ϕ θ ϕ θ ϕ= + +

rr rr  
Since we are working on the upper half of the sphere here are the limits on the parameters. 

 0 2 0
2
π

θ π ϕ≤ ≤ ≤ ≤  

 
Next, we need to determine r rθ ϕ×

r r
.  Here are the two individual vectors. 

 
( )
( )

, 2sin sin 2sin cos

, 2cos cos 2cos sin 2sin

r i j

r i j k
θ

ϕ

θ ϕ ϕ θ ϕ θ

θ ϕ ϕ θ ϕ θ ϕ

= − +

= + −

r rr
rr rr  

 
Now let’s take the cross product. 

 

( )
2 2 2 2

2 2 2 2

2 2

2sin sin 2sin cos 0
2cos cos 2cos sin 2sin

4sin cos 4sin cos sin 4sin sin 4sin cos cos

4sin cos 4sin sin 4sin cos sin cos

4sin cos 4sin sin 4si

i j k
r r

i k j k

i j k

i j

θ ϕ ϕ θ ϕ θ
ϕ θ ϕ θ ϕ

ϕ θ ϕ ϕ θ ϕ θ ϕ ϕ θ

ϕ θ ϕ θ ϕ ϕ θ θ

ϕ θ ϕ θ

× = −
−

= − − − −

= − − − +

= − − −

rr r

r r

r rr r
rr r

r r
n cos kϕ ϕ

r

 

 
Finally, we need the magnitude of this, 
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( )
( )

4 2 4 2 2 2

4 2 2 2 2

2 2 2

2

16sin cos 16sin sin 16sin cos

16sin cos sin 16sin cos

16sin sin cos

4 sin
4 sin
4sin

r rθ ϕ ϕ θ ϕ θ ϕ ϕ

ϕ θ θ ϕ ϕ

ϕ ϕ ϕ

ϕ

ϕ

ϕ

× = + +

= + +

= +

=

=

=

r r

 

 
We can drop the absolute value bars in the sine because sine is positive in the range of ϕ  that we 
are working with.  The surface integral is then, 
 ( )2cos 4sin

S D

z dS dAϕ ϕ=∫∫ ∫∫  

 
Don’t forget that we need to plug in for x, y and/or z in these as well, although in this case we just 
needed to plug in z.  Here is the evaluation for the double integral. 

 

( )

( )( )

2
2

0 0

2
2
00

2

0

4sin 2

2cos 2

4

8

S

z dS d d

d

d

ππ

ππ

π

ϕ ϕ θ

ϕ θ

θ

π

=

= −

=

=

∫∫ ∫ ∫

∫

∫

 

 
Example 3  Evaluate 

S

y dS∫∫  where S is the portion of the cylinder 2 2 3x y+ =  that lies 

between 0z =  and 6z = . 
 
Solution 
We parameterized up a cylinder in the previous section.  Here is the parameterization of this 
cylinder. 
 ( ), 3 cos 3 sinr z i j z kθ θ θ= + +

rr rr  
The ranges of the parameters are, 
 0 6 0 2z θ π≤ ≤ ≤ ≤  
 
Now we need zr rθ×

r r
.  Here are the two vectors. 

 
( )
( )

,

, 3 sin 3 cos
zr z k

r z i jθ

θ

θ θ θ

=

= − +

rr
r rr  

 
Here is the cross product. 
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0 0 1

3 sin 3 cos 0

3 cos 3 sin

z

i j k
r r

i j

θ

θ θ

θ θ

× =

−

= − −

rr r
r r

r r

 

 
The magnitude of this vector is, 

 2 23cos 3sin 3zr rθ θ θ× = + =
r r  

 
The surface integral is then, 

 

( )

( )

2 6

0 0

2

0

2

0

3 sin 3

3 sin

3 6sin

18cos

0

S D

y dS dA

dz d

d

π

π

π

θ

θ θ

θ θ

θ

=

=

=

= −

=

∫∫ ∫∫

∫ ∫

∫  

 
Example 4  Evaluate 

S

y z dS+∫∫  where S is the surface whose side is the cylinder 2 2 3x y+ = , 

whose bottom is the disk 2 2 3x y+ ≤  in the xy-plane and whose top is the plane 4z y= − . 
 
Solution 
There is a lot of information that we need to keep track of here.  First, we are using pretty much 
the same surface (the integrand is different however) as the previous example.  However, unlike 
the previous example we are putting a top and bottom on the surface this time.  Let’s first start out 
with a sketch of the surface. 
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Actually we need to be careful here.  There is more to this sketch than the actual surface itself.  
We’re going to let 1S  be the portion of the cylinder that goes from the xy-plane to the plane.  In 
other words, the top of the cylinder will be at an angle.  We’ll call the portion of the plane that 
lies inside (i.e. the cap on the cylinder) 2S .  Finally, the bottom of the cylinder (not shown here) 

is the disk of radius 3  in the xy-plane and is denoted by 3S . 
 
In order to do this integral we’ll need to note that just like the standard double integral, if the 
surface is split up into pieces we can also split up the surface integral.  So, for our example we 
will have, 
 

1 2 3S S S S

y z dS y z dS y z dS y z dS+ = + + + + +∫∫ ∫∫ ∫∫ ∫∫  

 
We’re going to need to do three integrals here.  However, we’ve done most of the work for the 
first one in the previous example so let’s start with that. 
 

1S  : The Cylinder 
 
The parameterization of the cylinder and zr rθ×

r r
 is, 

 ( ), 3 cos 3 sin 3zr z i j z k r rθθ θ θ= + + × =
rr rr r r  

 
The difference between this problem and the previous one is the limits on the parameters.  Here 
they are. 

 
0 2

0 4 4 3 sinz y

θ π

θ

≤ ≤

≤ ≤ − = −
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The upper limit for the z’s is the plane so we can just plug that in.  However, since we are on the 
cylinder we know what y is from the parameterization so we will also need to plug that in. 
 
Here is the integral for the cylinder. 

 

( )( )

( ) ( )

( )( )

( )

1

2 4 3sin

0 0

22

0

2 2

0

2

0

2

0

3 sin 3

3 3 sin

13 3 sin 4 3 sin 4 3 sin
2

33 8 sin
2
33 8 1 cos 2
4

29 33 sin 2
4 8

29 3
2

S D

y z dS z dA

z dz d

d

d

d

π θ

π

π

π

π

θ

θ θ

θ θ θ θ

θ θ

θ θ

θ θ

π

−

+ = +

= +

= − + −

= −

= − −

 = + 
 

=

∫∫ ∫∫

∫ ∫

∫

∫

∫

 

 
2S  : Plane on Top of the Cylinder 

 
In this case we don’t need to do any parameterization since it is set up to use the formula that we 
gave at the start of this section.  Remember that the plane is given by 4z y= − .   Also note that, 

for this surface, D is the disk of radius 3  centered at the origin. 
 
Here is the integral for the plane. 

 
( ) ( ) ( )

2

2 24 0 1 1

2 4

S D

D

y z dS y y dA

dA

+ = + − + − +

=

∫∫ ∫∫

∫∫
 

 
Don’t forget that we need to plug in for z!  Now at this point we can proceed in one of two ways.  
Either we can proceed with the integral or we can recall that 

D

dA∫∫  is nothing more than the area 

of D and we know that D is the disk of radius 3  and so there is no reason to do the integral.  
 
Here is the remainder of the work for this problem. 
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 ( )( )
2

2

4 2

4 2 3

12 2

S D

y z dS dA

π

π

+ =

=

=

∫∫ ∫∫

 

 
3S  : Bottom of the Cylinder 

 
Again, this is set up to use the initial formula we gave in this section once we realize that the 
equation for the bottom is given by ( ), 0g x y =  and D is the disk of radius 3  centered at the 
origin.  Also, don’t forget to plug in for z. 
 
Here is the work for this integral. 

 

( ) ( ) ( ) ( )
3

2 2 2

2 3 2

00
2 3

3

00
2

0
2

0

0 0 0 1

sin

1 sin
3

3 sin

3 cos

0

S D

D

y z dS y dA

y dA

r dr d

r d

d

π

π

π

π

θ θ

θ θ

θ θ

θ

+ = + + +

=

=

 =  
 

=

= −

=

⌠
⌡

⌠

⌡

∫∫ ∫∫

∫∫

∫

∫

 

 
We can now get the value of the integral that we are after. 

 

( )

1 2 3

29 3 12 2 0
2

29 3 24 2
2

S S S S

y z dS y z dS y z dS y z dS

π
π

π

+ = + + + + +

= + +

= +

∫∫ ∫∫ ∫∫ ∫∫
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 Surface Integrals of Vector Fields 

Just as we did with line integrals we now need to move on to surface integrals of vector fields.  
Recall that in line integrals the orientation of the curve we were integrating along could change 
the answer.  The same thing will hold true with surface integrals.  So, before we really get into 
doing surface integrals of vector fields we first need to introduce the idea of an oriented surface.   
 
Let’s start off with a surface that has two sides (while this may seem strange, recall that the 
Mobius Strip is a surface that only has one side!) that has a tangent plane at every point (except 
possibly along the boundary).  Making this assumption means that every point will have two unit 
normal vectors, 1nr  and 2 1n n= −

r r
.  This means that every surface will have two sets of normal 

vectors.  The set that we choose will give the surface an orientation. 
 
There is one convention that we will make in regards to certain kinds of oriented surfaces.  First 
we need to define a closed surface.  A surface S is closed if it is the boundary of some solid 
region E.  A good example of a closed surface is the surface of a sphere.  We say that the closed 
surface S has a positive orientation if we choose the set of unit normal vectors that point outward 
from the region E while the negative orientation will be the set of unit normal vectors that point 
in towards the region E. 
 
Note that this convention is only used for closed surfaces. 
 
In order to work with surface integrals of vector fields we will need to be able to write down a 
formula for the unit normal vector corresponding to the orientation that we’ve chosen to work 
with.  We have two ways of doing this depending on how the surface has been given to us. 
 
First, let’s suppose that the function is given by ( ),z g x y= .  In this case we first define a new 
function, 

( ) ( ), , ,f x y z z g x y= −  

In terms of our new function the surface is then given by the equation ( ), , 0f x y z = .  Now, 

recall that f∇  will be orthogonal (or normal) to the surface given by  ( ), , 0f x y z = .  This 
means that we have a normal vector to the surface.  The only potential problem is that it might not 
be a unit normal vector.  That isn’t a problem since we also know that we can turn any vector into 
a unit vector by dividing the vector by its length.  In or case this is, 

 fn
f

∇
=

∇
r  

 
In this case it will be convenient to actually compute the gradient vector and plug this into the 
formula for the normal vector.  Doing this gives, 

 
( ) ( )22 1

x y

x y

g i g j kfn
f g g

− − +∇
= =

∇ + +

rr r
r  

 
Now, from a notational standpoint this might not have been so convenient, but it does allow us to 
make a couple of additional comments.   
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First, notice that the component of the normal vector in the z-direction (identified by the k
r

 in the 
normal vector) is always positive and so this normal vector will generally point upwards.  It may 
not point directly up, but it will have an upwards component to it. 
 
This will be important when we are working with a closed surface and we want the positive 
orientation.  If we know that we can then look at the normal vector and determine if the 
“positive” orientation should point upwards or downwards.  Remember that the “positive” 
orientation must point out of the region and this may mean downwards in places.  Of course if it 
turns out that we need the downward orientation we can always take the negative of this unit 
vector and we’ll get the one that we need.  Again, remember that we always have that option 
when choosing the unit normal vector. 
 
Before we move onto the second method of giving the surface we should point out that we only 
did this for surfaces in the form ( ),z g x y= .  We could just as easily done the above work for 

surfaces in the form ( ),y g x z=  (so ( ) ( ), , ,f x y z y g x z= − ) or for surfaces in the form 

( ),x g y z=  (so ( ) ( ), , ,f x y z x g y z= − ). 
 
Now, we need to discuss how to find the unit normal vector if the surface is given parametrically 
as, 
 ( ) ( ) ( ) ( ), , , ,r u v x u v i y u v j z u v k= + +

rr rr  
In this case recall that the vector u vr r×

r r
 will be normal to the tangent plane at a particular point.  

But if the vector is normal to the tangent plane at a point then it will also be normal to the surface 
at that point.  So, this is a normal vector.  In order to guarantee that it is a unit normal vector we 
will also need to divide it by its magnitude.   
 
So, in the case of parametric surfaces one of the unit normal vectors will be, 

 u v

u v

r rn
r r

×
=

×

r rr
r r  

 
As with the first case we will need to look at this once it’s computed and determine if it points in 
the correct direction or not.  If it doesn’t then we can always take the negative of this vector and 
that will point in the correct direction. 
 
Finally, remember that we can always parameterize any surface given by ( ),z g x y=  (or 

( ),y g x z=  or ( ),x g y z= ) easily enough and so if we want to we can always use the 
parameterization formula to find the unit normal vector. 
 
Okay, now that we’ve looked at oriented surfaces and their associated unit normal vectors we can 
actually give a formula for evaluating surface integrals of vector fields. 
 
Given a vector field F

r
 with unit normal vector nr  then the surface integral of F

r
 over the surface 

S is given by, 
 

S S

F dS F n dS=∫∫ ∫∫
rr r ri i  
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where the right hand integral is a standard surface integral.  This is sometimes called the flux of 
F
r

 across S. 
 
Before we work any examples let’s notice that we can substitute in for the unit normal vector to 
get a somewhat easier formula to use.  We will need to be careful with each of the following 
formulas however as each will assume a certain orientation and we may have to change the 
normal vector to match the given orientation. 
 
Let’s first start by assuming that the surface is given by ( ),z g x y= .  In this case let’s also 

assume that the vector field is given by F P i Q j R k= + +
rr r r

 and that the orientation that we are 

after is the “upwards” orientation.  Under all of these assumptions the surface integral of F
r

 over 
S is, 
 

 
( )

( ) ( )
( ) ( )

( ) ( )

22

22
1

1

S S

x y
x y

x y
D

x y
D

x y
D

F dS F n dS

g i g j k
P i Q j R k g g dA

g g

P i Q j R k g i g j k dA

Pg Qg R dA

=

 
− − + = + + + + 

 + + 

= + + − − +

= − − +

⌠⌠


⌡⌡

∫∫ ∫∫

∫∫

∫∫

rr r ri i

rr r
rr r

i

r rr r r r
i

 

 
Now, remember that this assumed the “upward” orientation.  If we’d needed the “downward” 
orientation then we would need to change the signs on the normal vector.  This would in turn 
change the signs on the integrand as well.  So, we really need to be careful here when using this 
formula.  In general it is best to rederive this formula as you need it. 
 
When we’ve been given a surface that is not in parametric form there are in fact 6 possible 
integrals here.  Two for each form of the surface ( ),z g x y= , ( ),y g x z=  and ( ),x g y z= .  
Given each form of the surface there will be two possible unit normal vectors and we’ll need to 
choose the correct one to match the given orientation of the surface.  However, the derivation of 
each formula is similar to that given here and so shouldn’t be too bad to do as you need to. 
 
Notice as well that because we are using the unit normal vector the messy square root will always 
drop out.  This means that when we do need to derive the formula we won’t really need to put this 
in.  All we’ll need to work with is the numerator of the unit vector.  We will see at least one more 
of these derived in the examples below.  It should also be noted that the square root is nothing 
more than, 

 ( ) ( )22 1x yg g f+ + = ∇  
so in the following work we will probably just use this notation in place of the square root when 
we can to make things a little simpler. 
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Let’s now take a quick look at the formula for the surface integral when the surface is given 
parametrically by ( ),r u vr

.  In this case the surface integral is, 

 

( )

S S

u v
u v

u v
D

u v
D

F dS F n dS

r rF r r dA
r r

F r r dA

=

 ×
= ×  × 

= ×

⌠⌠

⌡⌡

∫∫ ∫∫

∫∫

rr r ri i

r rr r ri r r

r r ri

 

 
Again note that we may have to change the sign on u vr r×

r r
 to match the orientation of the surface 

and so there is once again really two formulas here.  Also note that again the magnitude cancels 
in this case and so we won’t need to worry that in these problems either. 
 
Note as well that there are even times when we will used the definition, 

S S

F dS F n dS=∫∫ ∫∫
rr r ri i , 

directly.  We will see an example of this below. 
 
Let’s now work a couple of examples. 
 
Example 1  Evaluate 

S

F dS∫∫
rr

i  where F y j z k= −
rr r

 and S is the surface given by the 

paraboloid 2 2y x z= + , 0 1y≤ ≤  and the disk 2 2 1x z+ ≤  at 1y = .  Assume that S has positive 
orientation. 
 
Solution 
Okay, first let’s notice that the disk is really nothing more than the cap on the paraboloid.  This 
means that we have a closed surface.  This is important because we’ve been told that the surface 
has a positive orientation and by convention this means that all the unit normal vectors will need 
to point outwards from the region enclosed by S.   
 
Let’s first get a sketch of S so we can get a feel for what is going on and in which direction we 
will need to unit normal vectors to point. 
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As noted in the sketch we will denote the paraboloid by 1S  and the disk by 2S .  Also note that in 
order for unit normal vectors on the paraboloid to point away from the region they will all need to 
point generally in the negative y direction.  On the other hand, unit normal vectors on the disk 
will need to point in the positive y direction in order to point away from the region. 
 
Since S is composed of the two surfaces we’ll need to do the surface integral on each and then 
add the results to get the overall surface integral.  Let’s start with the paraboloid.  In this case we 
have the surface in the form ( ),y g x z=  so we will need to derive the correct formula since the 
one given initially wasn’t for this kind of function.  This is easy enough to do however.  First 
define, 
 ( ) ( ) 2 2, , ,f x y z y g x z y x z= − = − −  
 
We will next need the gradient vector of this function. 
 2 ,1, 2f x z∇ = − −  
 
Now, the y component of the gradient is positive and so this vector will generally point in the 
positive y direction.  However, as noted above we need the normal vector point in the negative y 
direction to make sure that it will be pointing away from the enclosed region.  This means that we 
will need to use 

 
2 , 1, 2x zfn

f f
−−∇

= =
−∇ ∇

r  

 
Let’s note a couple of things here before we proceed.  We don’t really need to divide this by the 
magnitude of the gradient since this will just cancel out once we actually do the integral.  So, 
because of this we didn’t bother computing it.  Also, the dropping of the minus sign is not a typo.  
When we compute the magnitude we are going to square each of the components and so the 
minus sign will drop out. 
 

1S  : The Paraboloid 
 
Okay, here is the surface integral in this case. 
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( )

( )

1

2

2 2 2

2 2

2 , 1, 2

2

2

3

S D

D

D

D

x z
F dS y j z k f dA

f

y z dA

x z z dA

x z dA

 −
= − ∇  ∇ 

= − −

= − + −

= − +

∫∫ ∫∫

∫∫

∫∫

∫∫

rrr r
i i

 

 
Don’t forget that we need to plug in the equation of the surface for y before we actually compute 
the integral.  In this case D is the disk of radius 1 in the xz-plane and so it makes sense to use 
polar coordinates to complete this integral.  Here are polar coordinates for this region. 

 cos sin
0 2 0 1
x r z r

r
θ θ

θ π
= =
≤ ≤ ≤ ≤

 

 
Note that we kept the x conversion formula the same as the one we are used to using for x and let 
z be the formula that used the sine.  We could have done it any order, however in this way we are 
at least working with one of them as we are used to working with. 
 
Here is the evaluation of this integral. 

 

( )

( )

( )( ) ( )( )

( )

( )( )

1

2 2

2 1 2 2 2 2

00

2 1 2 2 3

00

2 1
4

00

2

0

2

0

3

cos 3 sin

cos 3sin

1 3 11 cos 2 1 cos 2
2 2 4

1 4 2cos 2
8
1 4 sin 2
8

S D

F dS x z dA

r r r dr d

r dr d

r d

d

π

π

π

π

π

θ θ θ

θ θ θ

θ θ θ

θ θ

θ θ

π

= − +

= − +

= − +

  = − + + −  
  

= − −

= − −

= −

⌠
⌡

⌠
⌡

⌠

⌡

∫∫ ∫∫

∫

∫

∫

rr
i

 

 
2S  : The Cap of the Paraboloid 

 
We can now do the surface integral on the disk (cap on the paraboloid).  This one is actually 
fairly easy to do and in fact we can use the definition of the surface integral directly.  First let’s 
notice that the disk is really just the portion of the plane 1y =  that is in front of the disk of radius 
1 in the xz-plane.   
 
Now we want the unit normal vector to point away from the enclosed region and since it must 
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also be orthogonal to the plane 1y =  then it must point in a direction that is parallel to the y-axis, 
but we already have a unit vector that does this.  Namely, 
 n j=

rr  
the standard unit basis vector.  It also points in the correct direction for us to use.  Because we 
have the vector field and the normal vector we can plug directly into the definition of the surface 
integral to get, 
 
 ( ) ( )

2 2 2S S S

F dS y j z k j dS y dS= − =∫∫ ∫∫ ∫∫
rrr r r

i i  

At this point we need to plug in for y (since 2S is a portion of the plane 1y =  we do know what it 
is) and we’ll also need the square root this time when we convert the surface integral over to a 
double integral.  In this case since we are using the definition directly we won’t get the canceling 
of the square root that we saw with the first portion.  To get the square root well need to 
acknowledge that  

( )1 ,y g x z= =  
and so the square root is, 

( ) ( )2 21x zg g+ +  
The surface integral is then, 

 2 2

1 0 1 0

S S

D D

F dS y dS

dA dA

=

= + + =

∫∫ ∫∫

∫∫ ∫∫

rr
i

 

 
At this point we can acknowledge that D is a disk of radius 1 and this double integral is nothing 
more than the double integral that will give the area of the region D so there is no reason to 
compute the integral.  Here is the value of the surface integral. 
 

2S

F dS π=∫∫
rr

i  

 
Finally, to finish this off we just need to add the two parts up.  Here is the surface integral that we 
were actually asked to compute. 
 

1 2

0
S S S

F dS F dS F dS π π= + = − + =∫∫ ∫∫ ∫∫
r r rr r r

i i i  

 
Example 2  Evaluate 

S

F dS∫∫
rr

i  where 4F x i y j z k= + +
rr r r

 and S is the upper half the sphere 

2 2 2 9x y z+ + =  and the disk 2 2 9x y+ ≤  in the plane 0z = .  Assume that S has the positive 
orientation. 
 
Solution 
So, as with the previous problem we have a closed surface and since we are also told that the 
surface has a positive orientation all the unit normal vectors must point away from the enclosed 
region.  To help us visualize this here is a sketch of the surface. 
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We will call 1S  the hemisphere and 2S  will be the bottom of the hemisphere (which isn’t shown 
on the sketch).  Now, in order for the unit normal vectors on the sphere to point away from 
enclosed region they will all need to have a positive z component.  Remember that the vector 
must be normal to the surface and if there is a positive z component and the vector is normal it 
will have to be pointing away from the enclosed region. 
 
On the other hand, the unit normal on the bottom of the disk must point in the negative z direction 
in order to point away from the enclosed region. 
 

1S  : The Sphere 
 
Let’s do the surface integral on 1S  first.  In this case since the surface is a sphere we will need to 
use the parametric representation of the surface.  This is, 

( ), 3sin cos 3sin sin 3cosr i j kθ ϕ ϕ θ ϕ θ ϕ= + +
rr rr

 
 

Since we are working on the hemisphere here are the limits on the parameters that we’ll need to 
use. 

 0 2 0
2
π

θ π ϕ≤ ≤ ≤ ≤  

Next, we need to determine r rθ ϕ×
r r

.  Here are the two individual vectors and the cross product. 

 
( )
( )

, 3sin sin 3sin cos

, 3cos cos 3cos sin 3sin

r i j

r i j k
θ

ϕ

θ ϕ ϕ θ ϕ θ

θ ϕ ϕ θ ϕ θ ϕ

= − +

= + −

r rr
rr rr  

 

 

( )
2 2 2 2

2 2 2 2

2 2

3sin sin 3sin cos 0
3cos cos 3cos sin 3sin

9sin cos 9sin cos sin 9sin sin 9sin cos cos

9sin cos 9sin sin 9sin cos sin cos

9sin cos 9sin sin 9si

i j k
r r

i k j k

i j k

i j

θ ϕ ϕ θ ϕ θ
ϕ θ ϕ θ ϕ

ϕ θ ϕ ϕ θ ϕ θ ϕ ϕ θ

ϕ θ ϕ θ ϕ ϕ θ θ

ϕ θ ϕ θ

× = −
−

= − − − −

= − − − +

= − − −

rr r

r r

r rr r
rr r

r r
n cos kϕ ϕ

r
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Note that we won’t need the magnitude of the cross product since that will cancel out once we 
start doing the integral.   
 
Notice that for the range of ϕ  that we’ve got both sine and cosine are positive and so this vector 
will have a negative z component and as we noted above in order for this to point away from the 
enclosed area we will need the z component to be positive.  Therefore we will need to use the 
following vector for the unit normal vector. 

 
2 29sin cos 9sin sin 9sin cosr r i j kn

r r r r
θ ϕ

θ ϕ θ ϕ

ϕ θ ϕ θ ϕ ϕ× + +
= − =

× ×

rr rr r
r

r r r r  

Again, we will drop the magnitude once we get to actually doing the integral since it will just 
cancel in the integral. 
 
Okay, next we’ll need 
 ( )( ) 4, 3sin cos 3sin sin 81cosF r i j kθ ϕ ϕ θ ϕ θ ϕ= + +

rr r rr  

Remember that in this evaluation we are just plugging in the x component of ( ),r θ ϕ
r

 into the 
vector field etc. 
 
We also may as well get the dot product out of the way that we know we are going to need. 

 
( )( ) ( ) 3 2 3 2 5

3 5

, 27sin cos 27sin sin 729sin cos

27sin 729sin cos

F r r rθ ϕθ ϕ ϕ θ ϕ θ ϕ ϕ

ϕ ϕ ϕ

× = + +

= +

r r r ri
 

 
Now we can do the integral. 

 ( )

1

2
3 52

00

2
2 52

00

2
2

3 6

00

2

0

27sin 729sin cos

27sin 1 cos 729sin cos

1 72927 cos cos cos
3 6

279
2

279

u v

S
D

r rF dS F r r dA
r r
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d
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π π

ππ

π

ϕ ϕ ϕ ϕ θ

ϕ ϕ ϕ ϕ ϕ θ
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=

=
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⌡⌡

⌠
⌡

⌠
⌡

⌠


⌡

⌠
⌡

∫∫

∫

∫

r rrr r r ri i r r

 

 
1S  : The Bottom of the Hemi-Sphere 

 
Now, we need to do the integral over the bottom of the hemisphere.  In this case we are looking at 
the disk 2 2 9x y+ ≤  that lies in the plane 0z =  and so the equation of this surface is actually 

0z = .  The disk is really the region D that tells us how much of the surface we are going to use.  
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This also means that we can use the definition of the surface integral here with  
 n k= −

rr  
 
We need the negative since it must point away from the enclosed region. 
 
The surface integral in this case is, 

 
( ) ( )

2 2

2

4

4

S S

S

F dS x i y j z k k dS

z dS

= + + −

= −

∫∫ ∫∫

∫∫

r rrr r r
i i

 

 
Remember, however, that we are in the plane given by 0z =  and so the surface integral 
becomes, 
 

2 2 2

4 0 0
S S S

F dS z dS dS= − = =∫∫ ∫∫ ∫∫
rr

i  

 
The last step is to then add the two pieces up.  Here is surface integral that we were asked to look 
at. 
 

1 2

279 0 279
S S S

F dS F dS F dS π π= + = + =∫∫ ∫∫ ∫∫
r r rr r r

i i i  

 
We will leave this section with a quick interpretation of a surface integral over a vector field.  If 
vr  is the velocity field of a fluid then the surface integral 
 

S

v dS∫∫
rri  

represents the volume of fluid flowing through S per time unit (i.e. per second, per minute, or 
whatever time unit you are using). 
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 Stokes’ Theorem 

In this section we are going to take a look at a theorem that is a higher dimensional version of 
Green’s Theorem.  In Green’s Theorem we related a line integral to a double integral over some 
region.  In this section we are going to relate a line integral to a surface integral.  However, before 
we give the theorem we first need to define the curve that we’re going to use in the line integral. 
 
Let’s start off with the following surface with the indicated orientation. 
 

 
 
Around the edge of this surface we have a curve C.  This curve is called the boundary curve.  
The orientation of the surface S will induce the positive orientation of C.  To get the positive 
orientation of C think of yourself as walking along the curve.  While you are walking along the 
curve if your head is pointing in the same direction as the unit normal vectors while the surface is 
on the left then you are walking in the positive direction on C. 
 
Now that we have this curve definition out of the way we can give Stokes’ Theorem. 
 
Stokes’ Theorem 
 
Let S be an oriented smooth surface that is bounded by a simple, closed, smooth boundary curve 
C with positive orientation.  Also let F

r
 be a vector field then, 

 curl
C S

F d r F dS=∫ ∫∫
rr rri i  

 
In this theorem note that the surface S can actually be any surface so long as its boundary curve is 
given by C.  This is something that can be used to our advantage to simplify the surface integral 
on occasion. 
 
Let’s take a look at a couple of examples. 
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Example 1  Use Stokes’ Theorem to evaluate curl
S

F dS∫∫
rr

i  where 2 3 33F z i xy j x y k= − +
rr r r

 

and S is the part of 2 25z x y= − −  above the plane 1z = .  Assume that S is oriented upwards. 
 
Solution 
Let’s start this off with a sketch of the surface. 
 

 
In this case the boundary curve C will be where the surface intersects the plane 1z =  and so will 
be the curve 

 
2 2

2 2

1 5
4 at 1

x y
x y z

= − −

+ = =
 

 
So, the boundary curve will be the circle of radius 2 that is in the plane 1z = .  The 
parameterization of this curve is, 
 ( ) 2cos 2sin , 0 2r t t i t j k t π= + + ≤ ≤

rr rr  
 
The first two components give the circle and the third component makes sure that it is in the plane 

1z = . 
 
Using Stokes’ Theorem we can write the surface integral as the following line integral. 

 ( )( ) ( )
2

0
curl

S C

F dS F d r F r t r t dt
π

′= =∫∫ ∫ ∫
rr r rr r ri i i  

 
So, it looks like we need a couple of quantities before we do this integral.  Let’s first get the 
vector field evaluated on the curve.  Remember that this is simply plugging the components of the 
parameterization into the vector field. 

 
( )( ) ( ) ( )( ) ( ) ( )2 3 3

3 3

1 3 2cos 2sin 2cos 2sin

12cos sin 64cos sin

F r t i t t j t t k

i t t j t t k

= − +

= − +

rr r rr
rr r  
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Next, we need the derivative of the parameterization and the dot product of this and the vector 
field. 

 
( )

( )( ) ( ) 2

2sin 2cos

2sin 24sin cos

r t t i t j

F r t r t t t t

′ = − +

′ = − −

r rr
r r ri

 

 
We can now do the integral. 

 ( )

2 2

0

23

0

curl 2sin 24sin cos

2cos 8cos

0

S

F dS t t t dt

t t

π

π

= − −

= +

=

∫∫ ∫
rr

i

 

 
Example 2  Use Stokes’ Theorem to evaluate 

C

F d r∫
r ri  where 2 2F z i y j x k= + +

rr r r
 and C is 

the triangle with vertices ( )1,0,0 , ( )0,1,0  and ( )0,0,1  with counter-clockwise rotation. 
 
Solution 
We are going to need the curl of the vector field eventually so let’s get that out of the way first. 

 ( )
2 2

curl 2 2 1

i j k

F z j j z j
x y z

z y x

∂ ∂ ∂
= = − = −

∂ ∂ ∂

rr r

r r r r
 

 
Now, all we have is the boundary curve for the surface that we’ll need to use in the surface 
integral.  However, as noted above all we need is any surface that has this as its boundary curve.  
So, let’s use the following plane with upwards orientation for the surface. 
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Since the plane is oriented upwards this induces the positive direction on C as shown.  The 
equation of this plane is, 
 ( )1 , 1x y z z g x y x y+ + = ⇒ = = − −  
 
Now, let’s use Stokes’ Theorem and get the surface integral set up. 

 ( )

( )

curl

2 1

2 1

C S

S

D

F d r F dS

z j dS

fz j f dA
f

=

= −

∇
= − ∇

∇

∫ ∫∫

∫∫

∫∫

rr rri i

rr
i

r
i

 

 
Okay, we now need to find a couple of quantities.  First let’s get the gradient.  Recall that this 
comes from the function of the surface. 

 
( ) ( ), , , 1f x y z z g x y z x y

f i j k

= − = − + +

∇ = + +
rr r  

Note as well that this also points upwards and so we have the correct direction. 
 
Now, D is the region in the xy-plane shown below, 

 
 
We get the equation of the line by plugging in 0z =  into the equation of the plane.  So based on 
this the ranges that define D are, 
 0 1 0 1x y x≤ ≤ ≤ ≤ − +  
 
The integral is then, 

 
( ) ( )

( )
1 1

0 0

2 1

2 1 1

C D
x

F d r z j i j k dA

x y dy dx
− +

= − + +

= − − −

∫ ∫∫

∫ ∫

rr r r rri i
 

 
Don’t forget to plug in for z since we are doing the surface integral on the plane.  Finishing this 
out gives, 
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( )

1 1

0 0

11 2

0 0

1 2

0

1
3 2

0

1 2 2

2

1 1
3 2
1
6

x

C
x

F d r x y dy dx

y xy y dx

x x dx

x x

− +

− +

= − −

= − −

= −

 = − 
 

= −

∫ ∫ ∫

∫

∫

r ri

 

 
In both of these examples we were able to take an integral that would have been somewhat 
unpleasant to deal with and by the use of Stokes’ Theorem we were able to convert it into an 
integral that wasn’t too bad. 
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 Divergence Theorem 

In this section we are going to relate surface integrals to triple integrals.  We will do this with the 
Divergence Theorem. 
 
Divergence Theorem 
Let E be a simple solid region and S is the boundary surface of E with positive orientation.  Let 
F
r

 be a vector field whose components have continuous first order partial derivatives.  Then, 
div

S E

F dS F dV=∫∫ ∫∫∫
rr r

i  

 
Let’s see an example of how to use this theorem. 
 
Example 1  Use the divergence theorem to evaluate 

S

F dS∫∫
rr

i  where 21
2F xy i y j z k= − +

rr r r
 

and the surface consists of the three surfaces, 2 24 3 3z x y= − − , 1 4z≤ ≤  on the top, 
2 2 1x y+ = , 0 1z≤ ≤  on the sides and 0z =  on the bottom. 

 
Solution 
Let’s start this off with a sketch of the surface. 
 

 
The region E for the triple integral is then the region enclosed by these surfaces.  Note that 
cylindrical coordinates would be a perfect coordinate system for this region.  If we do that here 
are the limits for the ranges. 

 

20 4 3
0 1
0 2

z r
r
θ π

≤ ≤ −
≤ ≤
≤ ≤

 

 
We’ll also need the divergence of the vector field so let’s get that. 
 div 1 1F y y= − + =

r
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The integral is then, 

 

22 1 4 3

000

2 1 3

00

2 1
2 4

00

2

0

div

4 3

32
4

5
4

5
2

S E

r

F dS F dV

r dz dr d

r r dr d

r r d

d

π

π

π

π

θ

θ

θ

θ

π

−

=

=

= −

 = − 
 

=

=

⌠ ⌠ ⌡⌡

⌠
⌡

⌠

⌡

⌠
⌡

∫∫ ∫∫∫

∫

∫

rr r
i
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