Summary of Convergence and Divergence Tests for Series | TEST | SERIES | CONVERGENCE OR DIVERGENCE | COMMENTS | |--------------------|---|---|---| | nth-term | $\sum a_n$ | Diverges if $\lim_{n\to\infty} a_n \neq 0$ | Inconclusive if $\lim_{n\to\infty} a_n = 0$ | | Geometric series | $\sum_{n=1}^{\infty} a_n$ | (i) Converges with sum $S = \frac{a}{1-r}$ if $ r < 1$
(ii) Diverges if $ r \ge 1$ | Useful for the comparison tests if the <i>n</i> th term a_n of a series is <i>similar</i> to ar^{n-1} | | <i>p</i> -series | $\sum_{n=1}^{\infty} \frac{1}{n^p}$ | (i) Converges if p > 1 (ii) Diverges if p ≤ 1 | Useful for the comparison tests if the <i>n</i> th term a_n of a series is <i>similar</i> to $1/n^p$ | | Integral | $\sum_{n=1}^{\infty} a_n$ $a_n = f(n)$ | (i) Converges if $\int_{1}^{\infty} f(x)dx$ converges
(ii) Diverges if $\int_{1}^{\infty} f(x)dx$ diverges | The function f obtained from $a_n = f(n)$ must be continuous, positive, decreasing, and readily integrable. | | Comparison | $\sum_{a_n} a_n, \sum_{n} b_n$ $a_n > 0, b_n > 0$ | (i) If ∑b_n converges and a_n ≤ b_n for every n, then ∑a_n converges. (ii) If ∑b_n diverges and a_n ≥ b_n for every n, then ∑a_n diverges. (iii) If lim_{n→∞} (a_n/b_n) = c > 0, them both series converge or both diverges. | The comparison series $\sum b_n$ is often a geometric series of a p -series. To find b_n in (iii), consider only the terms of a_n that have the greatest effect on the magnitude. | | Ratio | $\sum a_n$ | If $\lim_{n\to\infty} \left \frac{a_{n+1}}{a_n} \right = L$ (or ∞), the series (i) converges (absolutely) if $L<1$ (ii) diverges if $L>1$ (or ∞) | Inconclusive if $L=1$ Useful if a_n involves factorials or n th powers If $a_n > 0$ for every n , the absolute value sign may be disregarded. | | Root | $\sum a_n$ | If $\lim_{n\to\infty} \sqrt[n]{ a_n } = L$ (or ∞), the series (i) converges (absolutely) if $L<1$ (ii) diverges if $L>1$ (or ∞) | Inconclusive if $L=1$
Useful if a_n involves n th powers
If $a_n>0$ for every n , the absolute
value sign may be disregarded. | | Alternating series | $\sum (-1)^n a_n$ $a_n > 0$ | Converges if $a_k \ge a_{k+1}$ for every k and $\lim_{n\to\infty} a_n = 0$ | Applicable only to an alternating series | | $\sum a_n $ | $\sum a_n$ | If $\sum a_n $ converges, then $\sum a_n$ converges. | Useful for series that contain both positive and negative terms |